{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "532c6736",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n"
]
}
],
"source": [
"import arviz as az\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"import pymc as pm\n",
"\n",
"import causalpy as cp\n",
"\n",
"%load_ext autoreload\n",
"%autoreload 2"
]
},
{
"cell_type": "markdown",
"id": "b1b3aa75",
"metadata": {},
"source": [
"## Variable Selection Priors and Instrumental Variable Designs\n",
"\n",
"When building causal inference models, we often face a dilemma: we want to control for confounders to get unbiased causal estimates, but we're not always certain which variables are the true confounders. Include too few, and we risk omitted variable bias. Include too many, and we introduce noise that inflates our uncertainty or, worse, creates multicollinearity that destabilizes our estimates.\n",
"\n",
"Traditional approaches force us to make hard choices upfront—which variables to include, which to exclude. This in ideal cases should be driven by theory. But what if we could let the data help us make these decisions while still maintaining the principled probabilistic framework of Bayesian inference? This is where variable selection priors come in. Let's first simulate some data with some natural confounding structure. "
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "046aa8e0",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Y_cont
\n",
"
Y_bin
\n",
"
T_cont
\n",
"
T_bin
\n",
"
alpha
\n",
"
feature_0
\n",
"
feature_1
\n",
"
feature_2
\n",
"
feature_3
\n",
"
feature_4
\n",
"
...
\n",
"
feature_8
\n",
"
feature_9
\n",
"
feature_10
\n",
"
feature_11
\n",
"
feature_12
\n",
"
feature_13
\n",
"
Y_cont_scaled
\n",
"
Y_bin_scaled
\n",
"
T_cont_scaled
\n",
"
T_bin_scaled
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
3.169837
\n",
"
-0.170346
\n",
"
1.113394
\n",
"
0
\n",
"
9.236102
\n",
"
1.294441
\n",
"
0.418241
\n",
"
0.536286
\n",
"
-0.615573
\n",
"
-1.173784
\n",
"
...
\n",
"
0.559393
\n",
"
1.111766
\n",
"
-0.216069
\n",
"
0.451496
\n",
"
-0.863189
\n",
"
0.319180
\n",
"
0.268475
\n",
"
-0.438362
\n",
"
0.347809
\n",
"
-1.022452
\n",
"
\n",
"
\n",
"
1
\n",
"
10.479049
\n",
"
6.662990
\n",
"
2.272020
\n",
"
1
\n",
"
3.787487
\n",
"
-0.885005
\n",
"
0.315013
\n",
"
0.810138
\n",
"
1.137214
\n",
"
0.203685
\n",
"
...
\n",
"
-0.017179
\n",
"
0.410818
\n",
"
0.670074
\n",
"
1.954944
\n",
"
0.888255
\n",
"
-0.506518
\n",
"
0.916637
\n",
"
1.321011
\n",
"
0.726014
\n",
"
0.977650
\n",
"
\n",
"
\n",
"
2
\n",
"
7.307821
\n",
"
4.118982
\n",
"
2.062946
\n",
"
1
\n",
"
3.311157
\n",
"
-1.075537
\n",
"
1.058536
\n",
"
1.908944
\n",
"
1.122914
\n",
"
0.611691
\n",
"
...
\n",
"
0.050641
\n",
"
1.245489
\n",
"
-1.070642
\n",
"
-0.060250
\n",
"
-1.857638
\n",
"
0.806913
\n",
"
0.635421
\n",
"
0.666008
\n",
"
0.657767
\n",
"
0.977650
\n",
"
\n",
"
\n",
"
3
\n",
"
9.781360
\n",
"
0.649647
\n",
"
4.043904
\n",
"
1
\n",
"
8.423450
\n",
"
0.969380
\n",
"
0.698199
\n",
"
0.314419
\n",
"
1.446987
\n",
"
-2.729092
\n",
"
...
\n",
"
-1.052429
\n",
"
1.143079
\n",
"
-1.757701
\n",
"
-1.167276
\n",
"
-0.164620
\n",
"
1.687004
\n",
"
0.854768
\n",
"
-0.227239
\n",
"
1.304402
\n",
"
0.977650
\n",
"
\n",
"
\n",
"
4
\n",
"
5.739283
\n",
"
6.812030
\n",
"
0.642417
\n",
"
1
\n",
"
6.613922
\n",
"
0.245569
\n",
"
-0.338491
\n",
"
0.814305
\n",
"
-0.859798
\n",
"
0.334968
\n",
"
...
\n",
"
-0.547622
\n",
"
0.778724
\n",
"
0.678956
\n",
"
1.715229
\n",
"
-0.439130
\n",
"
-0.238847
\n",
"
0.496327
\n",
"
1.359385
\n",
"
0.194070
\n",
"
0.977650
\n",
"
\n",
"
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
\n",
"
\n",
"
2495
\n",
"
-5.099912
\n",
"
-0.870746
\n",
"
-1.409722
\n",
"
0
\n",
"
6.565630
\n",
"
0.226252
\n",
"
1.589653
\n",
"
0.056005
\n",
"
-0.386026
\n",
"
-0.462251
\n",
"
...
\n",
"
0.987633
\n",
"
0.246870
\n",
"
-0.202917
\n",
"
0.178579
\n",
"
0.763186
\n",
"
0.527462
\n",
"
-0.464865
\n",
"
-0.618693
\n",
"
-0.475800
\n",
"
-1.022452
\n",
"
\n",
"
\n",
"
2496
\n",
"
-32.742858
\n",
"
-7.337551
\n",
"
-8.468435
\n",
"
0
\n",
"
4.760520
\n",
"
-0.495792
\n",
"
0.546002
\n",
"
0.209072
\n",
"
0.666614
\n",
"
0.400847
\n",
"
...
\n",
"
-0.798775
\n",
"
-0.616483
\n",
"
0.431552
\n",
"
1.238957
\n",
"
0.957759
\n",
"
-0.583051
\n",
"
-2.916171
\n",
"
-2.283696
\n",
"
-2.779944
\n",
"
-1.022452
\n",
"
\n",
"
\n",
"
2497
\n",
"
6.759804
\n",
"
1.912040
\n",
"
1.615921
\n",
"
0
\n",
"
10.445934
\n",
"
1.778373
\n",
"
0.097808
\n",
"
-0.807658
\n",
"
0.380358
\n",
"
-0.455391
\n",
"
...
\n",
"
0.668040
\n",
"
1.471963
\n",
"
0.573966
\n",
"
-0.288768
\n",
"
-0.861025
\n",
"
0.372657
\n",
"
0.586824
\n",
"
0.097788
\n",
"
0.511847
\n",
"
-1.022452
\n",
"
\n",
"
\n",
"
2498
\n",
"
-11.249395
\n",
"
-1.938808
\n",
"
-3.103529
\n",
"
0
\n",
"
5.715321
\n",
"
-0.113872
\n",
"
0.747480
\n",
"
1.635159
\n",
"
-1.136585
\n",
"
-0.007239
\n",
"
...
\n",
"
-2.404202
\n",
"
-2.074570
\n",
"
0.022878
\n",
"
1.345018
\n",
"
0.705361
\n",
"
0.414329
\n",
"
-1.010186
\n",
"
-0.893686
\n",
"
-1.028702
\n",
"
-1.022452
\n",
"
\n",
"
\n",
"
2499
\n",
"
21.658258
\n",
"
7.675401
\n",
"
5.660952
\n",
"
1
\n",
"
5.741192
\n",
"
-0.103523
\n",
"
-1.083828
\n",
"
0.896827
\n",
"
0.146243
\n",
"
1.363973
\n",
"
...
\n",
"
-1.310958
\n",
"
-0.004224
\n",
"
0.206620
\n",
"
0.012787
\n",
"
-1.777783
\n",
"
0.340176
\n",
"
1.907981
\n",
"
1.581676
\n",
"
1.832247
\n",
"
0.977650
\n",
"
\n",
" \n",
"
\n",
"
2500 rows × 23 columns
\n",
"
"
],
"text/plain": [
" Y_cont Y_bin T_cont T_bin alpha feature_0 feature_1 \\\n",
"0 3.169837 -0.170346 1.113394 0 9.236102 1.294441 0.418241 \n",
"1 10.479049 6.662990 2.272020 1 3.787487 -0.885005 0.315013 \n",
"2 7.307821 4.118982 2.062946 1 3.311157 -1.075537 1.058536 \n",
"3 9.781360 0.649647 4.043904 1 8.423450 0.969380 0.698199 \n",
"4 5.739283 6.812030 0.642417 1 6.613922 0.245569 -0.338491 \n",
"... ... ... ... ... ... ... ... \n",
"2495 -5.099912 -0.870746 -1.409722 0 6.565630 0.226252 1.589653 \n",
"2496 -32.742858 -7.337551 -8.468435 0 4.760520 -0.495792 0.546002 \n",
"2497 6.759804 1.912040 1.615921 0 10.445934 1.778373 0.097808 \n",
"2498 -11.249395 -1.938808 -3.103529 0 5.715321 -0.113872 0.747480 \n",
"2499 21.658258 7.675401 5.660952 1 5.741192 -0.103523 -1.083828 \n",
"\n",
" feature_2 feature_3 feature_4 ... feature_8 feature_9 feature_10 \\\n",
"0 0.536286 -0.615573 -1.173784 ... 0.559393 1.111766 -0.216069 \n",
"1 0.810138 1.137214 0.203685 ... -0.017179 0.410818 0.670074 \n",
"2 1.908944 1.122914 0.611691 ... 0.050641 1.245489 -1.070642 \n",
"3 0.314419 1.446987 -2.729092 ... -1.052429 1.143079 -1.757701 \n",
"4 0.814305 -0.859798 0.334968 ... -0.547622 0.778724 0.678956 \n",
"... ... ... ... ... ... ... ... \n",
"2495 0.056005 -0.386026 -0.462251 ... 0.987633 0.246870 -0.202917 \n",
"2496 0.209072 0.666614 0.400847 ... -0.798775 -0.616483 0.431552 \n",
"2497 -0.807658 0.380358 -0.455391 ... 0.668040 1.471963 0.573966 \n",
"2498 1.635159 -1.136585 -0.007239 ... -2.404202 -2.074570 0.022878 \n",
"2499 0.896827 0.146243 1.363973 ... -1.310958 -0.004224 0.206620 \n",
"\n",
" feature_11 feature_12 feature_13 Y_cont_scaled Y_bin_scaled \\\n",
"0 0.451496 -0.863189 0.319180 0.268475 -0.438362 \n",
"1 1.954944 0.888255 -0.506518 0.916637 1.321011 \n",
"2 -0.060250 -1.857638 0.806913 0.635421 0.666008 \n",
"3 -1.167276 -0.164620 1.687004 0.854768 -0.227239 \n",
"4 1.715229 -0.439130 -0.238847 0.496327 1.359385 \n",
"... ... ... ... ... ... \n",
"2495 0.178579 0.763186 0.527462 -0.464865 -0.618693 \n",
"2496 1.238957 0.957759 -0.583051 -2.916171 -2.283696 \n",
"2497 -0.288768 -0.861025 0.372657 0.586824 0.097788 \n",
"2498 1.345018 0.705361 0.414329 -1.010186 -0.893686 \n",
"2499 0.012787 -1.777783 0.340176 1.907981 1.581676 \n",
"\n",
" T_cont_scaled T_bin_scaled \n",
"0 0.347809 -1.022452 \n",
"1 0.726014 0.977650 \n",
"2 0.657767 0.977650 \n",
"3 1.304402 0.977650 \n",
"4 0.194070 0.977650 \n",
"... ... ... \n",
"2495 -0.475800 -1.022452 \n",
"2496 -2.779944 -1.022452 \n",
"2497 0.511847 -1.022452 \n",
"2498 -1.028702 -1.022452 \n",
"2499 1.832247 0.977650 \n",
"\n",
"[2500 rows x 23 columns]"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def inv_logit(z):\n",
" \"\"\"Compute the inverse logit (sigmoid) of z.\"\"\"\n",
" return 1 / (1 + np.exp(-z))\n",
"\n",
"\n",
"def simulate_data(n=2500, alpha_true=3.0, rho=0.6, cate_estimation=False):\n",
" # Exclusion restrictions:\n",
" # X[0], X[1] affect both Y and T (confounders)\n",
" # X[2], X[3] affect ONLY T (instruments for T)\n",
" # X[4] affects ONLY Y (predictor of Y only)\n",
"\n",
" betaY = np.array(\n",
" [0.5, -0.3, 0.0, 0.0, 0.4, 0, 0, 0, 0, 0, 0, 0, 0, 0]\n",
" ) # X[2], X[3] excluded\n",
" betaD = np.array(\n",
" [0.7, 0.1, -0.4, 0.3, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0]\n",
" ) # X[4] excluded\n",
" p = len(betaY)\n",
"\n",
" # noise variances and correlation\n",
" sigma_U = 3.0\n",
" sigma_V = 3.0\n",
"\n",
" # design matrix (n × p) with mean-zero columns\n",
" X = np.random.normal(size=(n, p))\n",
" X = (X - X.mean(axis=0)) / X.std(axis=0)\n",
"\n",
" mean = [0, 0]\n",
" cov = [[sigma_U**2, rho * sigma_U * sigma_V], [rho * sigma_U * sigma_V, sigma_V**2]]\n",
" errors = np.random.multivariate_normal(mean, cov, size=n)\n",
" U = errors[:, 0] # error in outcome equation\n",
" V = errors[:, 1] #\n",
"\n",
" # continuous treatment\n",
" T_cont = X @ betaD + V\n",
"\n",
" # latent variable for binary treatment\n",
" T_latent = X @ betaD + V\n",
" T_bin = np.random.binomial(n=1, p=inv_logit(T_latent), size=n)\n",
"\n",
" alpha_individual = 3.0 + 2.5 * X[:, 0]\n",
"\n",
" # outcomes\n",
" Y_cont = alpha_true * T_cont + X @ betaY + U\n",
" if cate_estimation:\n",
" Y_bin = alpha_individual * T_bin + X @ betaY + U\n",
" else:\n",
" Y_bin = alpha_true * T_bin + X @ betaY + U\n",
"\n",
" # combine into DataFrame\n",
" data = pd.DataFrame(\n",
" {\n",
" \"Y_cont\": Y_cont,\n",
" \"Y_bin\": Y_bin,\n",
" \"T_cont\": T_cont,\n",
" \"T_bin\": T_bin,\n",
" }\n",
" )\n",
" data[\"alpha\"] = alpha_true + alpha_individual\n",
" for j in range(p):\n",
" data[f\"feature_{j}\"] = X[:, j]\n",
" data[\"Y_cont_scaled\"] = (data[\"Y_cont\"] - data[\"Y_cont\"].mean()) / data[\n",
" \"Y_cont\"\n",
" ].std(ddof=1)\n",
" data[\"Y_bin_scaled\"] = (data[\"Y_bin\"] - data[\"Y_bin\"].mean()) / data[\"Y_bin\"].std(\n",
" ddof=1\n",
" )\n",
" data[\"T_cont_scaled\"] = (data[\"T_cont\"] - data[\"T_cont\"].mean()) / data[\n",
" \"T_cont\"\n",
" ].std(ddof=1)\n",
" data[\"T_bin_scaled\"] = (data[\"T_bin\"] - data[\"T_bin\"].mean()) / data[\"T_bin\"].std(\n",
" ddof=1\n",
" )\n",
" return data\n",
"\n",
"\n",
"data = simulate_data()\n",
"instruments_data = data.copy()\n",
"features = [col for col in data.columns if \"feature\" in col]\n",
"formula = \"Y_cont ~ T_cont + \" + \" + \".join(features)\n",
"instruments_formula = \"T_cont ~ 1 + \" + \" + \".join(features)\n",
"data"
]
},
{
"cell_type": "markdown",
"id": "e2472e18",
"metadata": {},
"source": [
"CausalPy's `Variable Selection` module provides a way to encode our uncertainty about variable relevance directly into the prior distribution. Rather than choosing which predictors to include, we specify priors that allow coefficients to be shrunk toward zero (or exactly zero) when the data doesn't support their inclusion. The key insight is that variable selection becomes part of the inference problem rather than a preprocessing step. The module offers two fundamentally different approaches to variable selection, each reflecting a different belief about how sparsity manifests in the world.\n",
"\n",
"### The Spike-and-Slab: Discrete Choices\n",
"\n",
"The spike-and-slab prior embodies a binary worldview: each variable either matters or it doesn't. Mathematically, we express this as:\n",
"\n",
"$$ \\beta_{j} = \\gamma_{j} \\cdot \\beta_{j_\\text{raw}}$$\n",
"\n",
"such that \n",
"\n",
"$$ \\gamma_{j} \\in \\{0, 1\\}$$\n",
"\n",
"So we have the \"spike\"—the coefficient is exactly zero. When $\\gamma_{j} = 1$, we have the \"slab\" i.e. the coefficient takes on a value from the raw distribution.\n",
"This approach appeals to our intuition about many real-world scenarios. Consider a propensity score model predicting whether someone receives a treatment. Some demographic variables might genuinely have no relationship with treatment assignment, while others are strongly predictive. The spike-and-slab says: let's let each variable clearly declare itself as relevant or irrelevant.\n",
"\n",
"### The Regularised Horseshoe: Gentle Moderation\n",
"\n",
"The horseshoe prior takes a different philosophical stance. Instead of discrete selection, it says: effects exist on a continuum from negligible to substantial, and we should shrink them proportionally to their signal strength. Small effects get heavily shrunk (possibly to near-zero), while large effects escape shrinkage almost entirely.\n",
"\n",
"$$ \\beta_{j} = \\tau \\cdot \\lambda_{j} \\cdot \\beta_{j\\text{raw}}$$\n",
"\n",
"where $\\tau$ is a global shrinkage parameter shared across all coefficients, and $\\lambda_{j}$ is local or specific to each coefficient and regularised so as to ensure finite variance. \n"
]
},
{
"cell_type": "markdown",
"id": "806df6ea",
"metadata": {},
"source": [
"### Hyperparameters for Variable Selection Priors\n",
"\n",
"You can control the behaviour of the variable selection priors through some of the hyperparameters available. For the spike and slab prior, the most important hyperparamers are `temperature`, `pi_alpha`, and `pi_beta`. \n",
"\n",
"Because our sampler doesn't like discrete variables, we're approximating a bernoulli outcome in our sampling to define the spike and slab. The approximation is governed by the `temperature` parameter. The default value of 0.1 works well in most cases, creating indicators that cluster near 0 or 1 without causing sampling difficulties.\n",
"\n",
"The selection probability parameters `pi_alpha` and `pi_beta` encode your prior belief about sparsity. With both set to 2 (the default), you're placing a Beta(2,2) prior on π, the overall proportion of selected variables. This is symmetric around 0.5 but slightly concentrated there—you're saying \"I don't know how many variables are relevant, but probably not all of them and probably not none of them.\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "ae848fe9",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABkYAAAH5CAYAAADUcILTAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYMhJREFUeJzt3XuUVeWBJvyn5FIWfFChQKuoEUylP4y2MAYhIWImYkQM8TLGpNWoae0Y2ywvCYPESDu2ZScDoxkvaYhOks+IN4Kru8XYbboVoqJG01HQRBRvSUUwocKUgwVIdYF4vj8ynumSixRW1aHq/H5r7bXYe7/n8LwHzH7DU3ufikKhUAgAAAAAAEAZ2KfUAQAAAAAAAHqKYgQAAAAAACgbihEAAAAAAKBsKEYAAAAAAICyoRgBAAAAAADKhmIEAAAAAAAoG4oRAAAAAACgbPQvdYA98fbbb+f3v/99hgwZkoqKilLHAYC9QqFQyMaNG1NfX5999vGzD93JWgQAtmct0nOsRQBge51Zi/TKYuT3v/99Ro0aVeoYALBXWrNmTQ444IBSx+jTrEUAYOesRbqftQgA7NzurEV6ZTEyZMiQJH+c4NChQ0ucBgD2Dhs2bMioUaOK10m6j7UIAGzPWqTnWIsAwPY6sxbplcXIO7eJDh061AIAAN7F4xS6n7UIAOyctUj3sxYBgJ3bnbWIh34CAAAAAABlQzECAAAAAACUDcUIAAAAAABQNhQjAAAAAABA2VCMAAAAAAAAZUMxAgAAAAAAlA3FCAAAAAAAUDYUIwAAAAAAQNlQjAAAAAAAAGVDMQIAAACwG+bOnZuPfvSjGTJkSPbff/+cfPLJefHFFzuMKRQKaWxsTH19faqqqjJlypQ899xzHca0t7fn4osvzogRIzJ48OCcdNJJee2113pyKgBQ1hQjAAAAALth2bJlufDCC/Pzn/88S5YsyVtvvZVp06blzTffLI655pprct1112X+/Pl58sknU1dXl2OPPTYbN24sjpkxY0YWL16cRYsW5bHHHsumTZtywgknZNu2baWYFgCUnYpCoVAodYjO2rBhQ6qrq9Pa2pqhQ4eWOg4A7BVcH3uOzxoAtleO18f/9b/+V/bff/8sW7Ysn/zkJ1MoFFJfX58ZM2bkG9/4RpI/3h1SW1ubq6++Oueff35aW1uz33775fbbb89pp52WJPn973+fUaNG5Sc/+UmOO+649/x9y/GzBoD30pnroztGAAAAAPZAa2trkqSmpiZJ0tTUlObm5kybNq04prKyMkcddVQef/zxJMny5cuzdevWDmPq6+szduzY4ph3a29vz4YNGzpsAMCeU4wAAAAAdFKhUMjMmTPziU98ImPHjk2SNDc3J0lqa2s7jK2trS2ea25uzsCBAzNs2LCdjnm3uXPnprq6uriNGjWqq6cDAGVFMQIAAADQSRdddFF+9atf5Uc/+tF25yoqKjrsFwqF7Y69267GzJ49O62trcVtzZo1ex4cAFCMAAAAAHTGxRdfnHvvvTcPPfRQDjjggOLxurq6JNnuzo9169YV7yKpq6vLli1bsn79+p2OebfKysoMHTq0wwYA7DnFCAAAAMBuKBQKueiii3L33XfnwQcfTENDQ4fzDQ0Nqaury5IlS4rHtmzZkmXLlmXy5MlJkgkTJmTAgAEdxqxduzYrV64sjgEAulf/UgcAAAAA6A0uvPDCLFy4MD/+8Y8zZMiQ4p0h1dXVqaqqSkVFRWbMmJE5c+ZkzJgxGTNmTObMmZNBgwbljDPOKI4999xzc8kll2T48OGpqanJrFmzMm7cuEydOrWU0wOAsqEYgb3c6tWr09LSUuoYuzRixIiMHj261DEAoMj1E4DucNNNNyVJpkyZ0uH4LbfcknPOOSdJcumll6atrS0XXHBB1q9fn0mTJuWBBx7IkCFDiuOvv/769O/fP6eeemra2tpyzDHHZMGCBenXr19PTQVgr9Qb1vGJtXxfUFEoFAqlDtFZGzZsSHV1dVpbWz1Xkz5t9erVOfjgQ9LWtrnUUXapqmpQXnhhlQsClJjrY8/xWe/dXD8BSsP1sef4rIG+qLes4xNr+b1VZ66P7hiBvVhLS0va2jZn6hHfzLDqhvd+QQmsb23K0ieuSEtLi4sBAHsF108AAOh9esM6PrGW7ysUI9ALDKtuyH41h5Q6BgD0Kq6fAADQ+1jH0xP2KXUAAAAAAACAnqIYAQAAAAAAyoZiBAAAAAAAKBuKEQAAAAAAoGwoRgAAAAAAgLKhGAEAAAAAAMqGYgQAAAAAACgbihEAAAAAAKBsKEYAAAAAAICyoRgBAAAAAADKhmIEAAAAAAAoG4oRAAAAAACgbHS6GHnkkUdy4oknpr6+PhUVFbnnnnt2Ovb8889PRUVFbrjhhg7H29vbc/HFF2fEiBEZPHhwTjrppLz22mudjQIAAAAAANApnS5G3nzzzRx22GGZP3/+Lsfdc889+dd//dfU19dvd27GjBlZvHhxFi1alMceeyybNm3KCSeckG3btnU2DgAAAAAAwG7r39kXTJ8+PdOnT9/lmN/97ne56KKLcv/99+f444/vcK61tTU333xzbr/99kydOjVJcscdd2TUqFFZunRpjjvuuO3er729Pe3t7cX9DRs2dDY2AAAAAAB0iVWrVpU6wi6NGDEio0ePLnWMvVani5H38vbbb+eLX/xivv71r+fQQw/d7vzy5cuzdevWTJs2rXisvr4+Y8eOzeOPP77DYmTu3Lm56qqrujoqAAAAAADsts1tLanIPjnrrLNKHWWXqqoG5YUXVilHdqLLi5Grr746/fv3z1e/+tUdnm9ubs7AgQMzbNiwDsdra2vT3Ny8w9fMnj07M2fOLO5v2LAho0aN6rrQAAAAAADwHtq3bEwhb2fqEd/MsOqGUsfZofWtTVn6xBVpaWlRjOxElxYjy5cvz3e+852sWLEiFRUVnXptoVDY6WsqKytTWVnZFREBAAAAAOB9GVbdkP1qDil1DPZQp798fVceffTRrFu3LqNHj07//v3Tv3//vPrqq7nkkkvywQ9+MElSV1eXLVu2ZP369R1eu27dutTW1nZlHACgj5k7d24++tGPZsiQIdl///1z8skn58UXX+wwplAopLGxMfX19amqqsqUKVPy3HPPdRjT3t6eiy++OCNGjMjgwYNz0kkn5bXXXuvJqQAAAAAl0qXFyBe/+MX86le/yjPPPFPc6uvr8/Wvfz33339/kmTChAkZMGBAlixZUnzd2rVrs3LlykyePLkr4wAAfcyyZcty4YUX5uc//3mWLFmSt956K9OmTcubb75ZHHPNNdfkuuuuy/z58/Pkk0+mrq4uxx57bDZu3FgcM2PGjCxevDiLFi3KY489lk2bNuWEE07Itm3bSjEtAAAAoAd1+lFamzZtyiuvvFLcb2pqyjPPPJOampqMHj06w4cP7zB+wIABqaury4c//OEkSXV1dc4999xccsklGT58eGpqajJr1qyMGzcuU6dOfZ/TAQD6sn/5l3/psH/LLbdk//33z/Lly/PJT34yhUIhN9xwQy6//PKccsopSZJbb701tbW1WbhwYc4///y0trbm5ptvzu23315ce9xxxx0ZNWpUli5dmuOOO67H5wUAAAD0nE7fMfLUU09l/PjxGT9+fJJk5syZGT9+fP76r/96t9/j+uuvz8knn5xTTz01Rx55ZAYNGpR//Md/TL9+/TobBwAoY62trUmSmpqaJH/8gY3m5uZMmzatOKaysjJHHXVUHn/88SR//E60rVu3dhhTX1+fsWPHFse8W3t7ezZs2NBhAwAAAHqnTt8xMmXKlBQKhd0e/9vf/na7Y/vuu2/mzZuXefPmdfa3BwBI8sfvEpk5c2Y+8YlPZOzYsUmS5ubmJNnue8tqa2vz6quvFscMHDgww4YN227MO69/t7lz5+aqq67q6ikAAAAAJdCl3zECANBTLrroovzqV7/Kj370o+3OVVRUdNgvFArbHXu3XY2ZPXt2Wltbi9uaNWv2PDgAAABQUooRAKDXufjii3PvvffmoYceygEHHFA8XldXlyTb3fmxbt264l0kdXV12bJlS9avX7/TMe9WWVmZoUOHdtgAAACA3kkxAgD0GoVCIRdddFHuvvvuPPjgg2loaOhwvqGhIXV1dVmyZEnx2JYtW7Js2bJMnjw5STJhwoQMGDCgw5i1a9dm5cqVxTEAAABA39Xp7xgBACiVCy+8MAsXLsyPf/zjDBkypHhnSHV1daqqqlJRUZEZM2Zkzpw5GTNmTMaMGZM5c+Zk0KBBOeOMM4pjzz333FxyySUZPnx4ampqMmvWrIwbNy5Tp04t5fQAAACAHqAYAQB6jZtuuilJMmXKlA7Hb7nllpxzzjlJkksvvTRtbW254IILsn79+kyaNCkPPPBAhgwZUhx//fXXp3///jn11FPT1taWY445JgsWLEi/fv16aioAAABAiShGAIBeo1AovOeYioqKNDY2prGxcadj9t1338ybNy/z5s3rwnQAAABAb6AYoWytXr06LS0tpY6xS6tWrSp1BAAAAACAPkUxQllavXp1Dj74kLS1bS51FAAAAAAAepBihLLU0tKStrbNmXrENzOsuqHUcXbq1d/9LL949qZSxwAAAAAA6DMUI5S1YdUN2a/mkFLH2Kn1rU2ljgAAAAAA0KfsU+oAAAAAAAAAPUUxAgAAAAAAlA2P0gK6xKpVq0od4T2NGDEio0ePLnUMAAAAAKCEFCPA+7K5rSUV2SdnnXVWqaO8p6qqQXnhhVXKEQAAAAAoY4oR4H1p37IxhbydqUd8M8OqG0odZ6fWtzZl6RNXpKWlRTECAAAAAGVMMQJ0iWHVDdmv5pBSxwAAAAAA2CVfvg4AAAAAAJQNxQgAAAAAAFA2PEoLKCurVq0qdYRdGjFihO9AAQAAAIBupBgBysLmtpZUZJ+cddZZpY6yS1VVg/LCC6uUIwAAAADQTRQjQFlo37IxhbydqUd8M8OqG0odZ4fWtzZl6RNXpKWlRTECAAB7qUceeSTf/va3s3z58qxduzaLFy/OySefXDxfUVGxw9ddc801+frXv54kmTJlSpYtW9bh/GmnnZZFixZ1W24A4P9SjABlZVh1Q/arOaTUMQAAgF7qzTffzGGHHZa/+Iu/yOc+97ntzq9du7bD/j//8z/n3HPP3W7seeedl7/5m78p7ldVVXVPYABgO4oRAAAAgN00ffr0TJ8+fafn6+rqOuz/+Mc/ztFHH50PfehDHY4PGjRou7E7097envb29uL+hg0bOpEYAHi3fUodAAAAAKAv+sMf/pD77rsv55577nbn7rzzzowYMSKHHnpoZs2alY0bN+70febOnZvq6uriNmrUqO6MDQB9njtGAAAAALrBrbfemiFDhuSUU07pcPzMM89MQ0ND6urqsnLlysyePTu//OUvs2TJkh2+z+zZszNz5szi/oYNG5QjAPA+KEYAAAAAusEPf/jDnHnmmdl33307HD/vvPOKvx47dmzGjBmTiRMnZsWKFTn88MO3e5/KyspUVlZ2e14AKBcepQUAAADQxR599NG8+OKL+fKXv/yeYw8//PAMGDAgL7/8cg8kAwDcMQIAAADQxW6++eZMmDAhhx122HuOfe6557J169aMHDmyB5IB5Wr16tVpaWkpdYydWrVqVakjUEYUIwAAAAC7adOmTXnllVeK+01NTXnmmWdSU1OT0aNHJ/njd4D83d/9Xa699trtXv/rX/86d955Zz7zmc9kxIgRef7553PJJZdk/PjxOfLII3tsHkB5Wb16dQ4++JC0tW0udRTYKyhGAAAAAHbTU089laOPPrq4/86Xop999tlZsGBBkmTRokUpFAr5whe+sN3rBw4cmJ/+9Kf5zne+k02bNmXUqFE5/vjjc+WVV6Zfv349Mgeg/LS0tKStbXOmHvHNDKtuKHWcHXr1dz/LL569qdQxKBOKEQAAAIDdNGXKlBQKhV2O+cu//Mv85V/+5Q7PjRo1KsuWLeuOaADvaVh1Q/arOaTUMXZofWtTqSNQRnz5OgAAAAAAUDYUIwAAAAAAQNlQjAAAAAAAAGVDMQIAAAAAAJQNxQgAAAAAAFA2+pc6AAAAvcvq1avT0tJS6hg7tWrVqlJHAAAAYC+mGAEAYLetXr06Bx98SNraNpc6CgAAAOwRxQgAALutpaUlbW2bM/WIb2ZYdUOp4+zQq7/7WX7x7E2ljgEAAMBeSjECAECnDatuyH41h5Q6xg6tb20qdQQAAAD2Yr58HQAAAAAAKBuKEQAAAAAAoGwoRgAAAAAAgLKhGAEAAAAAAMqGYgQAAAAAACgbihEAAAAAAKBsKEYAAAAAAICyoRgBAHqVRx55JCeeeGLq6+tTUVGRe+65p8P5ioqKHW7f/va3i2OmTJmy3fnTTz+9h2cCAAAAlIJiBADoVd58880cdthhmT9//g7Pr127tsP2wx/+MBUVFfnc5z7XYdx5553XYdz3vve9nogPAAAAlFini5Fd/ZTm1q1b841vfCPjxo3L4MGDU19fnz//8z/P73//+w7v0d7enosvvjgjRozI4MGDc9JJJ+W1115735MBAPq+6dOn51vf+lZOOeWUHZ6vq6vrsP34xz/O0UcfnQ996EMdxg0aNKjDuOrq6p6IDwAAAJRYp4uRXf2U5ubNm7NixYpcccUVWbFiRe6+++689NJLOemkkzqMmzFjRhYvXpxFixblsccey6ZNm3LCCSdk27Ztez4TAIB3+cMf/pD77rsv55577nbn7rzzzowYMSKHHnpoZs2alY0bN+70fdrb27Nhw4YOGwAAANA79e/sC6ZPn57p06fv8Fx1dXWWLFnS4di8efPysY99LKtXr87o0aPT2tqam2++ObfffnumTp2aJLnjjjsyatSoLF26NMcdd9weTAMAYHu33nprhgwZst3dJWeeeWYaGhpSV1eXlStXZvbs2fnlL3+53TrmHXPnzs1VV13VE5EBAACAbtbpYqSzWltbU1FRkQ984ANJkuXLl2fr1q2ZNm1acUx9fX3Gjh2bxx9/fIfFSHt7e9rb24v7fkoTANgdP/zhD3PmmWdm33337XD8vPPOK/567NixGTNmTCZOnJgVK1bk8MMP3+59Zs+enZkzZxb3N2zYkFGjRnVfcAAAAKDbdOuXr//bv/1bLrvsspxxxhkZOnRokqS5uTkDBw7MsGHDOoytra1Nc3PzDt9n7ty5qa6uLm7+IQIAeC+PPvpoXnzxxXz5y19+z7GHH354BgwYkJdffnmH5ysrKzN06NAOGwAAANA7dVsxsnXr1px++ul5++23c+ONN77n+EKhkIqKih2emz17dlpbW4vbmjVrujouANDH3HzzzZkwYUIOO+yw9xz73HPPZevWrRk5cmQPJAMAAABKqVsepbV169aceuqpaWpqyoMPPtjhpyrr6uqyZcuWrF+/vsNdI+vWrcvkyZN3+H6VlZWprKzsjqgAQC+zadOmvPLKK8X9pqamPPPMM6mpqcno0aOT/PFRV3/3d3+Xa6+9drvX//rXv86dd96Zz3zmMxkxYkSef/75XHLJJRk/fnyOPPLIHpsHAAAAUBpdfsfIO6XIyy+/nKVLl2b48OEdzk+YMCEDBgzo8OWma9euzcqVK3dajAAAvOOpp57K+PHjM378+CTJzJkzM378+Pz1X/91ccyiRYtSKBTyhS98YbvXDxw4MD/96U9z3HHH5cMf/nC++tWvZtq0aVm6dGn69evXY/MAAAAASqPTd4zs6qc06+vr8/nPfz4rVqzIP/3TP2Xbtm3F7w2pqanJwIEDU11dnXPPPTeXXHJJhg8fnpqamsyaNSvjxo3L1KlTu25mAECfNGXKlBQKhV2O+cu//Mv85V/+5Q7PjRo1KsuWLeuOaAAAAEAv0Oli5KmnnsrRRx9d3J85c2aS5Oyzz05jY2PuvffeJMlHPvKRDq976KGHMmXKlCTJ9ddfn/79++fUU09NW1tbjjnmmCxYsMBPaQIAAAAAAN2q08XIe/2U5nv9BGeS7Lvvvpk3b17mzZvX2d8eAAAAAABgj3X5d4wAAAAAAADsrRQjAAAAAABA2VCMAAAAAAAAZUMxAgAAAAAAlA3FCAAAAAAAUDYUIwAAAAAAQNlQjAAAAAAAAGVDMQIAAAAAAJQNxQgAAAAAAFA2FCMAAAAAAEDZUIwAAAAAAABlQzECAAAAAACUDcUIAAAAAABQNvqXOgAAHa1atarUEd7TiBEjMnr06FLHAAAAAIBOU4wA7CU2t7WkIvvkrLPOKnWU91RVNSgvvLBKOQIAAABAr6MYAdhLtG/ZmELeztQjvplh1Q2ljrNT61ubsvSJK9LS0qIYAQCg7DzyyCP59re/neXLl2ft2rVZvHhxTj755OL5c845J7feemuH10yaNCk///nPi/vt7e2ZNWtWfvSjH6WtrS3HHHNMbrzxxhxwwAE9NQ0AKGuKEYC9zLDqhuxXc0ipYwAAADvw5ptv5rDDDstf/MVf5HOf+9wOx3z605/OLbfcUtwfOHBgh/MzZszIP/7jP2bRokUZPnx4LrnkkpxwwglZvnx5+vXr1635AQDFCAAAAMBumz59eqZPn77LMZWVlamrq9vhudbW1tx88825/fbbM3Xq1CTJHXfckVGjRmXp0qU57rjjujwzANDRPqUOAAAAANCXPPzww9l///1z0EEH5bzzzsu6deuK55YvX56tW7dm2rRpxWP19fUZO3ZsHn/88R2+X3t7ezZs2NBhAwD2nGIEAAAAoItMnz49d955Zx588MFce+21efLJJ/OpT30q7e3tSZLm5uYMHDgww4YN6/C62traNDc37/A9586dm+rq6uI2atSobp8HAPRlHqUFAAAA0EVOO+204q/Hjh2biRMn5sADD8x9992XU045ZaevKxQKqaio2OG52bNnZ+bMmcX9DRs2KEcA4H1wxwgAAABANxk5cmQOPPDAvPzyy0mSurq6bNmyJevXr+8wbt26damtrd3he1RWVmbo0KEdNgBgzylGAAAAALrJ66+/njVr1mTkyJFJkgkTJmTAgAFZsmRJcczatWuzcuXKTJ48uVQxAaCseJQWAAAAwG7atGlTXnnlleJ+U1NTnnnmmdTU1KSmpiaNjY353Oc+l5EjR+a3v/1t/uqv/iojRozIZz/72SRJdXV1zj333FxyySUZPnx4ampqMmvWrIwbNy5Tp04t1bQAoKwoRgAAAAB201NPPZWjjz66uP/Od3+cffbZuemmm/Lss8/mtttuyxtvvJGRI0fm6KOPzl133ZUhQ4YUX3P99denf//+OfXUU9PW1pZjjjkmCxYsSL9+/Xp8PgBQjhQjAAAAALtpypQpKRQKOz1///33v+d77Lvvvpk3b17mzZvXldEAgN3kO0YAAAAAAICy4Y4RAAAokVWrVpU6wnsaMWJERo8eXeoYAAAAXUYxAgAAPWxzW0sqsk/OOuusUkd5T1VVg/LCC6uUIwAAQJ+hGAEAgB7WvmVjCnk7U4/4ZoZVN5Q6zk6tb23K0ieuSEtLi2IEAADoMxQjAABQIsOqG7JfzSGljgEAAFBWfPk6AAAAAABQNhQjAAAAAABA2VCMAAAAAAAAZUMxAgAAAAAAlA3FCAAAAAAAUDb6lzoAAACwd1u1alWpI+zSiBEjMnr06FLHAAAAegnFCAAAsEOb21pSkX1y1llnlTrKLlVVDcoLL6xSjgAAALtFMQIAAOxQ+5aNKeTtTD3imxlW3VDqODu0vrUpS5+4Ii0tLYoRAABgtyhGAIBe5ZFHHsm3v/3tLF++PGvXrs3ixYtz8sknF8+fc845ufXWWzu8ZtKkSfn5z39e3G9vb8+sWbPyox/9KG1tbTnmmGNy44035oADDuipaUCvMqy6IfvVHFLqGAAAAF3Cl68DAL3Km2++mcMOOyzz58/f6ZhPf/rTWbt2bXH7yU9+0uH8jBkzsnjx4ixatCiPPfZYNm3alBNOOCHbtm3r7vgAAABAibljBADoVaZPn57p06fvckxlZWXq6up2eK61tTU333xzbr/99kydOjVJcscdd2TUqFFZunRpjjvuuC7PDAAAAOw93DECAPQ5Dz/8cPbff/8cdNBBOe+887Ju3briueXLl2fr1q2ZNm1a8Vh9fX3Gjh2bxx9/fIfv197eng0bNnTYAAAAgN5JMQIA9CnTp0/PnXfemQcffDDXXnttnnzyyXzqU59Ke3t7kqS5uTkDBw7MsGHDOryutrY2zc3NO3zPuXPnprq6uriNGjWq2+cBAAAAdA+P0gIA+pTTTjut+OuxY8dm4sSJOfDAA3PffffllFNO2enrCoVCKioqdnhu9uzZmTlzZnF/w4YNyhEAAADopdwxAgD0aSNHjsyBBx6Yl19+OUlSV1eXLVu2ZP369R3GrVu3LrW1tTt8j8rKygwdOrTDBgAAAPROihEAoE97/fXXs2bNmowcOTJJMmHChAwYMCBLliwpjlm7dm1WrlyZyZMnlyomAAAA0EM8SgsA6FU2bdqUV155pbjf1NSUZ555JjU1NampqUljY2M+97nPZeTIkfntb3+bv/qrv8qIESPy2c9+NklSXV2dc889N5dcckmGDx+empqazJo1K+PGjcvUqVNLNS0AAACghyhGAIBe5amnnsrRRx9d3H/nuz/OPvvs3HTTTXn22Wdz22235Y033sjIkSNz9NFH56677sqQIUOKr7n++uvTv3//nHrqqWlra8sxxxyTBQsWpF+/fj0+HwAAAKBndfpRWo888khOPPHE1NfXp6KiIvfcc0+H84VCIY2Njamvr09VVVWmTJmS5557rsOY9vb2XHzxxRkxYkQGDx6ck046Ka+99tr7mggAUB6mTJmSQqGw3bZgwYJUVVXl/vvvz7p167Jly5a8+uqrWbBgwXZflL7vvvtm3rx5ef3117N58+b84z/+oy9TBwAAgDLR6WLkzTffzGGHHZb58+fv8Pw111yT6667LvPnz8+TTz6Zurq6HHvssdm4cWNxzIwZM7J48eIsWrQojz32WDZt2pQTTjgh27Zt2/OZAAAAAAAAvIdOP0pr+vTpmT59+g7PFQqF3HDDDbn88stzyimnJEluvfXW1NbWZuHChTn//PPT2tqam2++ObfffnvxOd533HFHRo0alaVLl+a44457H9MBAAAAAADYuU7fMbIrTU1NaW5uzrRp04rHKisrc9RRR+Xxxx9Pkixfvjxbt27tMKa+vj5jx44tjnm39vb2bNiwocMGAAAAAADQWV1ajDQ3NydJamtrOxyvra0tnmtubs7AgQMzbNiwnY55t7lz56a6urq4eQY4AAAAAACwJ7q0GHlHRUVFh/1CobDdsXfb1ZjZs2entbW1uK1Zs6bLsgIAAAAAAOWj098xsit1dXVJ/nhXyMiRI4vH161bV7yLpK6uLlu2bMn69es73DWybt26TJ48eYfvW1lZmcrKyq6MSjdbvXp1WlpaSh1jp1atWlXqCAAAAAAAlECXFiMNDQ2pq6vLkiVLMn78+CTJli1bsmzZslx99dVJkgkTJmTAgAFZsmRJTj311CTJ2rVrs3LlylxzzTVdGYcSWb16dQ4++JC0tW0udRQAAAAAAOig08XIpk2b8sorrxT3m5qa8swzz6SmpiajR4/OjBkzMmfOnIwZMyZjxozJnDlzMmjQoJxxxhlJkurq6px77rm55JJLMnz48NTU1GTWrFkZN25cpk6d2nUzo2RaWlrS1rY5U4/4ZoZVN5Q6zg69+ruf5RfP3lTqGAAAAAAA9LBOFyNPPfVUjj766OL+zJkzkyRnn312FixYkEsvvTRtbW254IILsn79+kyaNCkPPPBAhgwZUnzN9ddfn/79++fUU09NW1tbjjnmmCxYsCD9+vXrgimxtxhW3ZD9ag4pdYwdWt/aVOoIAAAAAACUQKeLkSlTpqRQKOz0fEVFRRobG9PY2LjTMfvuu2/mzZuXefPmdfa3BwAAAAAA2GP7lDoAAAAAAABAT+nSL18HAAAAACgnq1evTktLS6lj7NKqVatKHQH2KooRAAAAAIA9sHr16hx88CFpa9tc6ihAJyhGAAAAAAD2QEtLS9raNmfqEd/MsOqGUsfZqVd/97P84tmbSh0D9hqKEQAAAACA92FYdUP2qzmk1DF2an1rU6kjwF7Fl68DAAAAAABlQzECAAAAAACUDcUIAAAAAABQNhQjAAAAAABA2VCMAAAAAAAAZUMxAgAAAAAAlA3FCAAAAMBueuSRR3LiiSemvr4+FRUVueeee4rntm7dmm984xsZN25cBg8enPr6+vz5n/95fv/733d4jylTpqSioqLDdvrpp/fwTACgfClGAAAAAHbTm2++mcMOOyzz58/f7tzmzZuzYsWKXHHFFVmxYkXuvvvuvPTSSznppJO2G3veeedl7dq1xe173/teT8QHAJL0L3UAAAAAgN5i+vTpmT59+g7PVVdXZ8mSJR2OzZs3Lx/72MeyevXqjB49unh80KBBqaur69asAMCOuWMEAAAAoJu0tramoqIiH/jABzocv/POOzNixIgceuihmTVrVjZu3LjT92hvb8+GDRs6bADAnnPHCAAAAEA3+Ld/+7dcdtllOeOMMzJ06NDi8TPPPDMNDQ2pq6vLypUrM3v27Pzyl7/c7m6Td8ydOzdXXXVVT8UGgD5PMQIAAADQxbZu3ZrTTz89b7/9dm688cYO584777zir8eOHZsxY8Zk4sSJWbFiRQ4//PDt3mv27NmZOXNmcX/Dhg0ZNWpU94UHgD5OMQIAAADQhbZu3ZpTTz01TU1NefDBBzvcLbIjhx9+eAYMGJCXX355h8VIZWVlKisruysuAJQdxQgAAABAF3mnFHn55Zfz0EMPZfjw4e/5mueeey5bt27NyJEjeyAhAKAYAQAAANhNmzZtyiuvvFLcb2pqyjPPPJOamprU19fn85//fFasWJF/+qd/yrZt29Lc3JwkqampycCBA/PrX/86d955Zz7zmc9kxIgRef7553PJJZdk/PjxOfLII0s1LQAoK4oRAAAAgN301FNP5eijjy7uv/PdH2effXYaGxtz7733Jkk+8pGPdHjdQw89lClTpmTgwIH56U9/mu985zvZtGlTRo0aleOPPz5XXnll+vXr12PzAIByphgBAAAA2E1TpkxJoVDY6fldnUuSUaNGZdmyZV0dCwDohH1KHQAAAAAAAKCnKEYAAAAAAICyoRgBAAAAAADKhmIEAAAAAAAoG4oRAAAAAACgbChGAAAAAACAsqEYAQAAAAAAyoZiBAAAAAAAKBuKEQAAAAAAoGwoRgCAXuWRRx7JiSeemPr6+lRUVOSee+4pntu6dWu+8Y1vZNy4cRk8eHDq6+vz53/+5/n973/f4T2mTJmSioqKDtvpp5/ewzMBAAAASkExAgD0Km+++WYOO+ywzJ8/f7tzmzdvzooVK3LFFVdkxYoVufvuu/PSSy/lpJNO2m7seeedl7Vr1xa3733vez0RHwAAACix/qUOAADQGdOnT8/06dN3eK66ujpLlizpcGzevHn52Mc+ltWrV2f06NHF44MGDUpdXV23ZgUAAAD2PoqRXmj16tVpaWkpdYydWrVqVakjAEBRa2trKioq8oEPfKDD8TvvvDN33HFHamtrM3369Fx55ZUZMmTIDt+jvb097e3txf0NGzZ0Z2QAAACgGylGepnVq1fn4IMPSVvb5lJHAYC93r/927/lsssuyxlnnJGhQ4cWj5955plpaGhIXV1dVq5cmdmzZ+eXv/zldnebvGPu3Lm56qqreio2AAAA0I0UI71MS0tL2to2Z+oR38yw6oZSx9mhV3/3s/zi2ZtKHQOAMrd169acfvrpefvtt3PjjTd2OHfeeecVfz127NiMGTMmEydOzIoVK3L44Ydv916zZ8/OzJkzi/sbNmzIqFGjui88AAAA0G0UI73UsOqG7FdzSKlj7ND61qZSRwCgzG3dujWnnnpqmpqa8uCDD3a4W2RHDj/88AwYMCAvv/zyDouRysrKVFZWdldcAAAAoAcpRgCAPuWdUuTll1/OQw89lOHDh7/na5577rls3bo1I0eO7IGEAAAAQCkpRgCAXmXTpk155ZVXivtNTU155plnUlNTk/r6+nz+85/PihUr8k//9E/Ztm1bmpubkyQ1NTUZOHBgfv3rX+fOO+/MZz7zmYwYMSLPP/98LrnkkowfPz5HHnlkqaYFAAAA9BDFCADQqzz11FM5+uiji/vvfPfH2WefncbGxtx7771Jko985CMdXvfQQw9lypQpGThwYH7605/mO9/5TjZt2pRRo0bl+OOPz5VXXpl+/fr12DwAAACA0lCMAAC9ypQpU1IoFHZ6flfnkmTUqFFZtmxZV8cCAAAAeol9Sh0AAAAAAACgp7hjBAAAAADYK61evTotLS2ljrFTq1atKnUEYA8oRgAAAACAvc7q1atz8MGHpK1tc6mjAH2MYgQAAAAA2Ou0tLSkrW1zph7xzQyrbih1nB169Xc/yy+evanUMYBOUowAAAAAAHutYdUN2a/mkFLH2KH1rU2ljgDsAV++DgAAAAAAlA3FCAAAAAAAUDa6vBh566238l//639NQ0NDqqqq8qEPfSh/8zd/k7fffrs4plAopLGxMfX19amqqsqUKVPy3HPPdXUUAAAAAACADrq8GLn66qvzP//n/8z8+fOzatWqXHPNNfn2t7+defPmFcdcc801ue666zJ//vw8+eSTqaury7HHHpuNGzd2dRwAAAAAAICiLi9Gnnjiifzn//yfc/zxx+eDH/xgPv/5z2fatGl56qmnkvzxbpEbbrghl19+eU455ZSMHTs2t956azZv3pyFCxd2dRwAAAAAAICiLi9GPvGJT+SnP/1pXnrppSTJL3/5yzz22GP5zGc+kyRpampKc3Nzpk2bVnxNZWVljjrqqDz++OM7fM/29vZs2LChwwYAAAAAANBZ/bv6Db/xjW+ktbU1Bx98cPr165dt27blv/23/5YvfOELSZLm5uYkSW1tbYfX1dbW5tVXX93he86dOzdXXXVVV0cFAAAAAADKTJffMXLXXXfljjvuyMKFC7NixYrceuut+R//43/k1ltv7TCuoqKiw36hUNju2Dtmz56d1tbW4rZmzZqujg0AAAAAAJSBLr9j5Otf/3ouu+yynH766UmScePG5dVXX83cuXNz9tlnp66uLskf7xwZOXJk8XXr1q3b7i6Sd1RWVqaysrKrowIAAAAAAGWmy+8Y2bx5c/bZp+Pb9uvXL2+//XaSpKGhIXV1dVmyZEnx/JYtW7Js2bJMnjy5q+MAAAAAAAAUdfkdIyeeeGL+23/7bxk9enQOPfTQPP3007nuuuvypS99KckfH6E1Y8aMzJkzJ2PGjMmYMWMyZ86cDBo0KGeccUZXxwEAAAAAACjq8mJk3rx5ueKKK3LBBRdk3bp1qa+vz/nnn5+//uu/Lo659NJL09bWlgsuuCDr16/PpEmT8sADD2TIkCFdHQcAAAAAAKCoy4uRIUOG5IYbbsgNN9yw0zEVFRVpbGxMY2NjV//2AAAAAAAAO9Xl3zECAAAAAACwt1KMAAAAAAAAZUMxAgAAAAAAlA3FCAAAAAAAUDYUIwAAAAAAQNlQjAAAAAAAAGVDMQIAAAAAAJQNxQgAAADAbnrkkUdy4oknpr6+PhUVFbnnnns6nC8UCmlsbEx9fX2qqqoyZcqUPPfccx3GtLe35+KLL86IESMyePDgnHTSSXnttdd6cBYAUN4UIwAAAAC76c0338xhhx2W+fPn7/D8Nddck+uuuy7z58/Pk08+mbq6uhx77LHZuHFjccyMGTOyePHiLFq0KI899lg2bdqUE044Idu2beupaQBAWetf6gAAAAAAvcX06dMzffr0HZ4rFAq54YYbcvnll+eUU05Jktx6662pra3NwoULc/7556e1tTU333xzbr/99kydOjVJcscdd2TUqFFZunRpjjvuuB6bCwCUK3eMAAAAAHSBpqamNDc3Z9q0acVjlZWVOeqoo/L4448nSZYvX56tW7d2GFNfX5+xY8cWx7xbe3t7NmzY0GEDAPacYgQAAACgCzQ3NydJamtrOxyvra0tnmtubs7AgQMzbNiwnY55t7lz56a6urq4jRo1qhvSA0D5UIwAAAAAdKGKiooO+4VCYbtj77arMbNnz05ra2txW7NmTZdlBYBypBgBAAAA6AJ1dXVJst2dH+vWrSveRVJXV5ctW7Zk/fr1Ox3zbpWVlRk6dGiHDQDYc4oRAAAAgC7Q0NCQurq6LFmypHhsy5YtWbZsWSZPnpwkmTBhQgYMGNBhzNq1a7Ny5criGACge/UvdQAAAACA3mLTpk155ZVXivtNTU155plnUlNTk9GjR2fGjBmZM2dOxowZkzFjxmTOnDkZNGhQzjjjjCRJdXV1zj333FxyySUZPnx4ampqMmvWrIwbNy5Tp04t1bQAoKwoRgAAAAB201NPPZWjjz66uD9z5swkydlnn50FCxbk0ksvTVtbWy644IKsX78+kyZNygMPPJAhQ4YUX3P99denf//+OfXUU9PW1pZjjjkmCxYsSL9+/Xp8PgBQjhQjAAAAALtpypQpKRQKOz1fUVGRxsbGNDY27nTMvvvum3nz5mXevHndkBAAeC++YwQAAAAAACgbihEAAAAAAKBsKEYAAAAAAICyoRgBAAAAAADKhmIEAAAAAAAoG4oRAKBXeeSRR3LiiSemvr4+FRUVueeeezqcLxQKaWxsTH19faqqqjJlypQ899xzHca0t7fn4osvzogRIzJ48OCcdNJJee2113pwFgAAAECpKEYAgF7lzTffzGGHHZb58+fv8Pw111yT6667LvPnz8+TTz6Zurq6HHvssdm4cWNxzIwZM7J48eIsWrQojz32WDZt2pQTTjgh27Zt66lpAAAAACXSv9QBAAA6Y/r06Zk+ffoOzxUKhdxwww25/PLLc8oppyRJbr311tTW1mbhwoU5//zz09ramptvvjm33357pk6dmiS54447MmrUqCxdujTHHXdcj80FAAAA6HnuGAEA+oympqY0Nzdn2rRpxWOVlZU56qij8vjjjydJli9fnq1bt3YYU19fn7FjxxbHvFt7e3s2bNjQYQMAAAB6J8UIANBnNDc3J0lqa2s7HK+trS2ea25uzsCBAzNs2LCdjnm3uXPnprq6uriNGjWqG9IDAAAAPUExAgD0ORUVFR32C4XCdsfebVdjZs+endbW1uK2Zs2aLssKAAAA9CzFCADQZ9TV1SXJdnd+rFu3rngXSV1dXbZs2ZL169fvdMy7VVZWZujQoR02AAAAoHdSjAAAfUZDQ0Pq6uqyZMmS4rEtW7Zk2bJlmTx5cpJkwoQJGTBgQIcxa9euzcqVK4tjAAAAgL6rf6kDANA7rVq1qtQRdmnEiBEZPXp0qWPQDTZt2pRXXnmluN/U1JRnnnkmNTU1GT16dGbMmJE5c+ZkzJgxGTNmTObMmZNBgwbljDPOSJJUV1fn3HPPzSWXXJLhw4enpqYms2bNyrhx4zJ16tRSTQsAAADoIYoRADplc1tLKrJPzjrrrFJH2aWqqkF54YVVypE+6KmnnsrRRx9d3J85c2aS5Oyzz86CBQty6aWXpq2tLRdccEHWr1+fSZMm5YEHHsiQIUOKr7n++uvTv3//nHrqqWlra8sxxxyTBQsWpF+/fj0+HwAAAOgOe/sPtSal+8FWxQgAndK+ZWMKeTtTj/hmhlU3lDrODq1vbcrSJ65IS0uLYqQPmjJlSgqFwk7PV1RUpLGxMY2NjTsds++++2bevHmZN29eNyQEAACA0uktP9SalO4HWxUjAOyRYdUN2a/mkFLHAAAAAODf6Q0/1JqU9gdbFSMAAAAAANDH+KHWndun1AEAAAAAAAB6imIEAAAAAAAoG4oRAAAAAACgbChGAAAAAACAsuHL1wEA9hKrV69OS0tLqWPs0qpVq0odAQAAAN4XxQgAwF5g9erVOfjgQ9LWtrnUUQAAAKBPU4wAAOwFWlpa0ta2OVOP+GaGVTeUOs5Ovfq7n+UXz95U6hgAAACwxxQjAAB7kWHVDdmv5pBSx9ip9a1NpY4AAAAA74svXwcAAAAAAMqGYgQAAAAAACgbihEAAAAAAKBsKEYAAAAAAICyoRgBAAAAAADKhmIEAAAAAAAoG91SjPzud7/LWWedleHDh2fQoEH5yEc+kuXLlxfPFwqFNDY2pr6+PlVVVZkyZUqee+657ogCAAAAAABQ1OXFyPr163PkkUdmwIAB+ed//uc8//zzufbaa/OBD3ygOOaaa67Jddddl/nz5+fJJ59MXV1djj322GzcuLGr4wAAAAAAABT17+o3vPrqqzNq1KjccsstxWMf/OAHi78uFAq54YYbcvnll+eUU05Jktx6662pra3NwoULc/7552/3nu3t7Wlvby/ub9iwoatjAwAAAAAAZaDL7xi59957M3HixPzZn/1Z9t9//4wfPz4/+MEPiuebmprS3NycadOmFY9VVlbmqKOOyuOPP77D95w7d26qq6uL26hRo7o6NgAAAAAAUAa6vBj5zW9+k5tuuiljxozJ/fffn6985Sv56le/mttuuy1J0tzcnCSpra3t8Lra2triuXebPXt2Wltbi9uaNWu6OjYAAAAAAFAGuvxRWm+//XYmTpyYOXPmJEnGjx+f5557LjfddFP+/M//vDiuoqKiw+sKhcJ2x95RWVmZysrKro4KAAD0EatWrSp1hPc0YsSIjB49utQxAACg7HV5MTJy5Mj86Z/+aYdjhxxySP7hH/4hSVJXV5fkj3eOjBw5sjhm3bp1291FAgAAsCub21pSkX1y1llnlTrKe6qqGpQXXlilHAEAgBLr8mLkyCOPzIsvvtjh2EsvvZQDDzwwSdLQ0JC6urosWbIk48ePT5Js2bIly5Yty9VXX93VcQAAgD6sfcvGFPJ2ph7xzQyrbih1nJ1a39qUpU9ckZaWFsUIAACUWJcXI//lv/yXTJ48OXPmzMmpp56aX/ziF/n+97+f73//+0n++AitGTNmZM6cORkzZkzGjBmTOXPmZNCgQTnjjDO6Og4AAFAGhlU3ZL+aQ0odAwAA6AW6vBj56Ec/msWLF2f27Nn5m7/5mzQ0NOSGG27ImWeeWRxz6aWXpq2tLRdccEHWr1+fSZMm5YEHHsiQIUO6Og4AAAAAAEBRlxcjSXLCCSfkhBNO2On5ioqKNDY2prGxsTt+ewAAAAAAgB3ap9QBAAAAAAAAeopiBAAAAAAAKBuKEQAAAIAu8sEPfjAVFRXbbRdeeGGS5Jxzztnu3Mc//vESpwaA8tIt3zECAAAAUI6efPLJbNu2rbi/cuXKHHvssfmzP/uz4rFPf/rTueWWW4r7AwcO7NGMAFDuFCMAAAAAXWS//fbrsP/f//t/z5/8yZ/kqKOOKh6rrKxMXV1dT0cDAP4Pj9ICAAAA6AZbtmzJHXfckS996UupqKgoHn/44Yez//7756CDDsp5552XdevW7fJ92tvbs2HDhg4bALDnFCMAAAAA3eCee+7JG2+8kXPOOad4bPr06bnzzjvz4IMP5tprr82TTz6ZT33qU2lvb9/p+8ydOzfV1dXFbdSoUT2QHgD6Lo/SAgAAAOgGN998c6ZPn576+vrisdNOO63467Fjx2bixIk58MADc9999+WUU07Z4fvMnj07M2fOLO5v2LBBOQIA74NiBAAAAKCLvfrqq1m6dGnuvvvuXY4bOXJkDjzwwLz88ss7HVNZWZnKysqujggAZcujtAAAAAC62C233JL9998/xx9//C7Hvf7661mzZk1GjhzZQ8kAAMUIAAAAQBd6++23c8stt+Tss89O//7/92EdmzZtyqxZs/LEE0/kt7/9bR5++OGceOKJGTFiRD772c+WMDEAlBeP0gIAAADoQkuXLs3q1avzpS99qcPxfv365dlnn81tt92WN954IyNHjszRRx+du+66K0OGDClRWgAoP4oRAAAAgC40bdq0FAqF7Y5XVVXl/vvvL0EiAODf8ygtAAAAAACgbChGAIA+5YMf/GAqKiq22y688MIkyTnnnLPduY9//OMlTg0AAAD0FI/SAgD6lCeffDLbtm0r7q9cuTLHHnts/uzP/qx47NOf/nRuueWW4v7AgQN7NCMAAABQOooRAKBP2W+//Trs//f//t/zJ3/yJznqqKOKxyorK1NXV9fT0QAAAIC9gEdpAQB91pYtW3LHHXfkS1/6UioqKorHH3744ey///456KCDct5552XdunW7fJ/29vZs2LChwwYAAAD0TooRAKDPuueee/LGG2/knHPOKR6bPn167rzzzjz44IO59tpr8+STT+ZTn/pU2tvbd/o+c+fOTXV1dXEbNWpUD6QHAAAAuoNHaQEAfdbNN9+c6dOnp76+vnjstNNOK/567NixmThxYg488MDcd999OeWUU3b4PrNnz87MmTOL+xs2bFCOAAAAQC+lGAEA+qRXX301S5cuzd13373LcSNHjsyBBx6Yl19+eadjKisrU1lZ2dURAQAAgBLwKC0AoE+65ZZbsv/+++f444/f5bjXX389a9asyciRI3soGQAAAFBKihEAoM95++23c8stt+Tss89O//7/9wbZTZs2ZdasWXniiSfy29/+Ng8//HBOPPHEjBgxIp/97GdLmBgAAADoKR6lBQD0OUuXLs3q1avzpS99qcPxfv365dlnn81tt92WN954IyNHjszRRx+du+66K0OGDClRWgAAAKAnKUYAgD5n2rRpKRQK2x2vqqrK/fffX4JEAAAAwN7Co7QAAAAAAICyoRgBAAAAAADKhmIEAAAAAAAoG75jBIA+a9WqVaWO8J5GjBiR0aNHlzoGAAAAQNlQjADQ52xua0lF9slZZ51V6ijvqapqUF54YZVyBAAA6HGrV69OS0tLqWPsVG/4YTegd1KMANDntG/ZmELeztQjvplh1Q2ljrNT61ubsvSJK9LS0qIYAQAAetTq1atz8MGHpK1tc6mjAPQ4xQgAfdaw6obsV3NIqWMAAADsdVpaWtLWtnmv/oGyV3/3s/zi2ZtKHQPogxQjAAAAAFCm9uYfKFvf2lTqCEAftU+pAwAAAAAAAPQUxQgAAAAAAFA2FCMAAAAAAEDZUIwAAAAAAABlQzECAAAAAACUDcUIAAAAAABQNhQjAAAAAABA2VCMAAAAAAAAZUMxAgAAAAAAlI3+pQ4AAABQLlatWlXqCLs0YsSIjB49utQxAACgWylGAAAAutnmtpZUZJ+cddZZpY6yS1VVg/LCC6uUIwAA9GmKEQAAgG7WvmVjCnk7U4/4ZoZVN5Q6zg6tb23K0ieuSEtLi2IEAIA+TTECAADQQ4ZVN2S/mkNKHQMAAMqaYuTfWb16dVpaWkodY5f29mcSAwAAAADA3kwx8n+sXr06Bx98SNraNpc6CgAAAAAA0E0UI/9HS0tL2to279XP/E2SV3/3s/zi2ZtKHQMAAAAAAHqlbi9G5s6dm7/6q7/K1772tdxwww1JkkKhkKuuuirf//73s379+kyaNCnf/e53c+ihh3Z3nPe0tz/zd31rU6kjAAAAAABAr7VPd775k08+me9///v5j//xP3Y4fs011+S6667L/Pnz8+STT6auri7HHntsNm7c2J1xAAAAAACAMtdtxcimTZty5pln5gc/+EGGDRtWPF4oFHLDDTfk8ssvzymnnJKxY8fm1ltvzebNm7Nw4cLuigMAAAAAANB9xciFF16Y448/PlOnTu1wvKmpKc3NzZk2bVrxWGVlZY466qg8/vjjO3yv9vb2bNiwocMGAAAAAADQWd3yHSOLFi3KihUr8uSTT253rrm5OUlSW1vb4XhtbW1effXVHb7f3Llzc9VVV3V9UAAAAAAAoKx0+R0ja9asyde+9rXccccd2XfffXc6rqKiosN+oVDY7tg7Zs+endbW1uK2Zs2aLs0MAAAAAACUhy6/Y2T58uVZt25dJkyYUDy2bdu2PPLII5k/f35efPHFJH+8c2TkyJHFMevWrdvuLpJ3VFZWprKysqujAgAAAAAAZabL7xg55phj8uyzz+aZZ54pbhMnTsyZZ56ZZ555Jh/60IdSV1eXJUuWFF+zZcuWLFu2LJMnT+7qOAAAAAAAAEVdfsfIkCFDMnbs2A7HBg8enOHDhxePz5gxI3PmzMmYMWMyZsyYzJkzJ4MGDcoZZ5zR1XEAAAAAAACKuvyOkd1x6aWXZsaMGbngggsyceLE/O53v8sDDzyQIUOGlCIOAAAAQJdobGxMRUVFh62urq54vlAopLGxMfX19amqqsqUKVPy3HPPlTAxAJSfLr9jZEcefvjhDvsVFRVpbGxMY2NjT/z2AAAAAD3m0EMPzdKlS4v7/fr1K/76mmuuyXXXXZcFCxbkoIMOyre+9a0ce+yxefHFF/3AKAD0kJLcMQIAAADQV/Xv3z91dXXFbb/99kvyx7tFbrjhhlx++eU55ZRTMnbs2Nx6663ZvHlzFi5cWOLUAFA+FCMAAAAAXejll19OfX19Ghoacvrpp+c3v/lNkqSpqSnNzc2ZNm1acWxlZWWOOuqoPP744zt9v/b29mzYsKHDBgDsOcUIAAAAQBeZNGlSbrvtttx///35wQ9+kObm5kyePDmvv/56mpubkyS1tbUdXlNbW1s8tyNz585NdXV1cRs1alS3zgEA+jrFCAAAAEAXmT59ej73uc9l3LhxmTp1au67774kya233locU1FR0eE1hUJhu2P/3uzZs9Pa2lrc1qxZ0z3hAaBMKEYAAAAAusngwYMzbty4vPzyy6mrq0uS7e4OWbdu3XZ3kfx7lZWVGTp0aIcNANhzihEAAACAbtLe3p5Vq1Zl5MiRaWhoSF1dXZYsWVI8v2XLlixbtiyTJ08uYUoAKC+KEQCgT2lsbExFRUWH7Z2fzkz++KiKxsbG1NfXp6qqKlOmTMlzzz1XwsQAQF8ya9asLFu2LE1NTfnXf/3XfP7zn8+GDRty9tlnp6KiIjNmzMicOXOyePHirFy5Muecc04GDRqUM844o9TRAaBs9C91AACArnbooYdm6dKlxf1+/foVf33NNdfkuuuuy4IFC3LQQQflW9/6Vo499ti8+OKLGTJkSCniAgB9yGuvvZYvfOELaWlpyX777ZePf/zj+fnPf54DDzwwSXLppZemra0tF1xwQdavX59JkyblgQcesA4BgB6kGAEA+pz+/ft3uEvkHYVCITfccEMuv/zynHLKKUn++EWotbW1WbhwYc4///yejgoA9DGLFi3a5fmKioo0NjamsbGxZwIBANvxKC0AoM95+eWXU19fn4aGhpx++un5zW9+kyRpampKc3Nzpk2bVhxbWVmZo446Ko8//vhO36+9vT0bNmzosAEAAAC9k2IEAOhTJk2alNtuuy33339/fvCDH6S5uTmTJ0/O66+/nubm5iRJbW1th9fU1tYWz+3I3LlzU11dXdxGjRrVrXMAAAAAuo9iBADoU6ZPn57Pfe5zGTduXKZOnZr77rsvyR8fmfWOioqKDq8pFArbHfv3Zs+endbW1uK2Zs2a7gkPAAAAdDvFCADQpw0ePDjjxo3Lyy+/XPzekXffHbJu3brt7iL59yorKzN06NAOGwAAANA7KUYAgD6tvb09q1atysiRI9PQ0JC6urosWbKkeH7Lli1ZtmxZJk+eXMKUAAAAQE/pX+oAAABdadasWTnxxBMzevTorFu3Lt/61reyYcOGnH322amoqMiMGTMyZ86cjBkzJmPGjMmcOXMyaNCgnHHGGaWODgAAAPQAxQgA0Ke89tpr+cIXvpCWlpbst99++fjHP56f//znOfDAA5Mkl156adra2nLBBRdk/fr1mTRpUh544IEMGTKkxMkBAACAnqAYAQD6lEWLFu3yfEVFRRobG9PY2NgzgQAAAIC9iu8YAQAAAAAAyoZiBAAAAAAAKBuKEQAAAAAAoGwoRgAAAAAAgLKhGAEAAAAAAMqGYgQAAAAAACgbihEAAAAAAKBsKEYAAAAAAICyoRgBAAAAAADKhmIEAAAAAAAoG4oRAAAAAACgbChGAAAAAACAsqEYAQAAAAAAyoZiBAAAAAAAKBuKEQAAAAAAoGwoRgAAAAAAgLKhGAEAAAAAAMqGYgQAAAAAACgbihEAAAAAAKBsKEYAAAAAAICyoRgBAAAAAADKhmIEAAAAAAAoG4oRAAAAAACgbChGAAAAAACAsqEYAQAAAAAAyoZiBAAAAAAAKBuKEQAAAAAAoGwoRgAAAAAAgLKhGAEAAAAAAMpG/1IHAAAAYO+xatWqUkd4TyNGjMjo0aNLHQMAgF5KMQIAAEA2t7WkIvvkrLPOKnWU91RVNSgvvLBKOQIAwB5RjAAAAJD2LRtTyNuZesQ3M6y6odRxdmp9a1OWPnFFWlpaFCPAXmv16tVpaWkpdYxd6g13CAJ0ly4vRubOnZu77747L7zwQqqqqjJ58uRcffXV+fCHP1wcUygUctVVV+X73/9+1q9fn0mTJuW73/1uDj300K6OAwAAQCcMq27IfjWHlDoGQK+1evXqHHzwIWlr21zqKADsRJcXI8uWLcuFF16Yj370o3nrrbdy+eWXZ9q0aXn++eczePDgJMk111yT6667LgsWLMhBBx2Ub33rWzn22GPz4osvZsiQIV0dCQAAAAB6REtLS9raNu/1d+C9+ruf5RfP3lTqGAAl0eXFyL/8y7902L/llluy//77Z/ny5fnkJz+ZQqGQG264IZdffnlOOeWUJMmtt96a2traLFy4MOeff35XRwIAAACAHrW334G3vrWp1BEASmaf7v4NWltbkyQ1NTVJkqampjQ3N2fatGnFMZWVlTnqqKPy+OOP7/A92tvbs2HDhg4bAAAAAABAZ3VrMVIoFDJz5sx84hOfyNixY5Mkzc3NSZLa2toOY2tra4vn3m3u3Lmprq4ubqNGjerO2AAAAAAAQB/VrcXIRRddlF/96lf50Y9+tN25ioqKDvuFQmG7Y++YPXt2Wltbi9uaNWu6JS8AAADA+zF37tx89KMfzZAhQ7L//vvn5JNPzosvvthhzDnnnJOKiooO28c//vESJQaA8tNtxcjFF1+ce++9Nw899FAOOOCA4vG6urok2e7ukHXr1m13F8k7KisrM3To0A4bAAAAwN5m2bJlufDCC/Pzn/88S5YsyVtvvZVp06blzTff7DDu05/+dNauXVvcfvKTn5QoMQCUny7/8vVCoZCLL744ixcvzsMPP5yGhoYO5xsaGlJXV5clS5Zk/PjxSZItW7Zk2bJlufrqq7s6DgAAAECP+Zd/+ZcO+7fcckv233//LF++PJ/85CeLxysrK4s/PPpe2tvb097eXtz33asA8P50+R0jF154Ye64444sXLgwQ4YMSXNzc5qbm9PW1pbkj4/QmjFjRubMmZPFixdn5cqVOeecczJo0KCcccYZXR0HAAAAoGRaW1uTJDU1NR2OP/zww9l///1z0EEH5bzzzsu6det2+h6+exUAulaXFyM33XRTWltbM2XKlIwcObK43XXXXcUxl156aWbMmJELLrggEydOzO9+97s88MADGTJkSFfHAQDKjOd6AwB7i0KhkJkzZ+YTn/hExo4dWzw+ffr03HnnnXnwwQdz7bXX5sknn8ynPvWpDneF/Hu+exUAula3PErrvVRUVKSxsTGNjY1d/dsDAGXuned6f/SjH81bb72Vyy+/PNOmTcvzzz+fwYMHF8d9+tOfzi233FLcHzhwYCniAgB92EUXXZRf/epXeeyxxzocP+2004q/Hjt2bCZOnJgDDzww9913X0455ZTt3qeysjKVlZXdnhcAykWXFyMAAKXkud4AwN7g4osvzr333ptHHnkkBxxwwC7Hjhw5MgceeGBefvnlHkoHAOWtyx+lBQCwN/FcbwCgJxUKhVx00UW5++678+CDD6ahoeE9X/P6669nzZo1GTlyZA8kBAAUIwBAn+W53gBAT7vwwgtzxx13ZOHChRkyZEiam5vT3Nyctra2JMmmTZsya9asPPHEE/ntb3+bhx9+OCeeeGJGjBiRz372syVODwDlwaO0AIA+y3O9AYCedtNNNyVJpkyZ0uH4LbfcknPOOSf9+vXLs88+m9tuuy1vvPFGRo4cmaOPPjp33XVXhgwZUoLEAFB+FCMAQJ/kud4AQCkUCoVdnq+qqsr999/fQ2kAgB1RjAAAfUqhUMjFF1+cxYsX5+GHH/ZcbwAAAKAD3zECAPQpnusNAAAA7Io7RgCAPsVzvQEAAIBdUYwAAH2K53oDAAAAu+JRWgAAAAAAQNlQjAAAAAAAAGVDMQIAAAAAAJQNxQgAAAAAAFA2FCMAAAAAAEDZUIwAAAAAAABlQzECAAAAAACUDcUIAAAAAABQNhQjAAAAAABA2VCMAAAAAAAAZaN/qQMAAABAZ61atarUEXZpxIgRGT16dKljAACwA4oRAAAAeo3NbS2pyD4566yzSh1ll6qqBuWFF1YpRwAA9kKKEQAAAHqN9i0bU8jbmXrENzOsuqHUcXZofWtTlj5xRVpaWhQjAAB7IcUIAAAAvc6w6obsV3NIqWMAANAL+fJ1AAAAAACgbChGAAAAAACAsqEYAQAAAAAAyoZiBAAAAAAAKBuKEQAAAAAAoGwoRgAAAAAAgLKhGAEAAAAAAMpG/1IHAAAAAIDdtXr16rS0tJQ6xk6tWrWq1BEAeA+KEQAAAAB6hdWrV+fggw9JW9vmUkcBoBdTjAAAAADQK7S0tKStbXOmHvHNDKtuKHWcHXr1dz/LL569qdQxANgFxQgAAAAAvcqw6obsV3NIqWPs0PrWplJHAOA9+PJ1AAAAAACgbChGAAAAAACAsqEYAQAAAAAAyoZiBAAAAAAAKBuKEQAAAAAAoGwoRgAAAAAAgLLRv9QBAAAAoC9atWpVqSO8pxEjRmT06NGljgEA0KMUIwAAANCFNre1pCL75Kyzzip1lPdUVTUoL7ywSjlCkmT16tVpaWkpdYxd6g2FIwB7P8UIAAAAdKH2LRtTyNuZesQ3M6y6odRxdmp9a1OWPnFFWlpaFCNk9erVOfjgQ9LWtrnUUQCg2ylGAAAAoBsMq27IfjWHlDoG7JaWlpa0tW3e6wu9V3/3s/zi2ZtKHQOAXk4xAgAAAECSvb/QW9/aVOoIAPQB+5Q6AAAAAAAAQE9RjAAAAAAAAGVDMQIAAAAAAJQNxQgAAAAAAFA2FCMAAAAAAEDZKGkxcuONN6ahoSH77rtvJkyYkEcffbSUcQCAMmMtAgCUkrUIAJRGyYqRu+66KzNmzMjll1+ep59+Ov/pP/2nTJ8+PatXry5VJACgjFiLAAClZC0CAKXTv1S/8XXXXZdzzz03X/7yl5MkN9xwQ+6///7cdNNNmTt3boex7e3taW9vL+63trYmSTZs2NBleTZt2pQk+V+vr8rWtzZ32ft2tfWtv02yd+eUsev0hpy9IWPSO3L2hoxJ78jZGzImyRutryb54zWoK65p77xHoVB43+9VDqxF9kxv+O9Lxq7TG3L2hoxJ78jZGzImvSNnb8iYWIuUmrXInukN/331hoxJ78gpY9fpDTl7Q8akd+TsDRmTEq9FCiXQ3t5e6NevX+Huu+/ucPyrX/1q4ZOf/OR246+88spCEpvNZrPZbLuxrVmzpqcu6b2WtYjNZrPZbN23WYu8N2sRm81ms9m6b9udtUhJ7hhpaWnJtm3bUltb2+F4bW1tmpubtxs/e/bszJw5s7j/9ttv53//7/+d4cOHp6Kionh8w4YNGTVqVNasWZOhQ4d23wTKkM+2e/l8u5fPt3v5fLtPZz/bQqGQjRs3pr6+vgfS9W7dtRbprL7234/57L360lwS89nbmc/erTvnYy2y+/aWtciu9KW/+31pLon57M360lwS89nb9aX5dNVcOrMWKdmjtJJsd/EuFAo7vKBXVlamsrKyw7EPfOADO33foUOH9vq/DHsrn2338vl2L59v9/L5dp/OfLbV1dXdnKZv6a61SGf1tf9+zGfv1ZfmkpjP3s589m7dNR9rkc7ZW9Yiu9KX/u73pbkk5rM360tzScxnb9eX5tMVc9ndtUhJvnx9xIgR6dev33Y/BbFu3brtfloCAKCrWYsAAKVkLQIApVWSYmTgwIGZMGFClixZ0uH4kiVLMnny5FJEAgDKiLUIAFBK1iIAUFole5TWzJkz88UvfjETJ07MEUccke9///tZvXp1vvKVr+zxe1ZWVubKK6/c7vZS3j+fbffy+XYvn2/38vl2H59t9+qOtUhn9bU/Y/PZe/WluSTms7czn71bX5tPb7Y3rEV2pS/9XelLc0nMZ2/Wl+aSmM/eri/NpxRzqSgUCoUe+93e5cYbb8w111yTtWvXZuzYsbn++uvzyU9+slRxAIAyYy0CAJSStQgAlEZJixEAAAAAAICeVJLvGAEAAAAAACgFxQgAAAAAAFA2FCMAAAAAAEDZUIwAAAAAAABlo1cVIzfeeGMaGhqy7777ZsKECXn00Ud3OX7ZsmWZMGFC9t1333zoQx/K//yf/7OHkvZOnfl877777hx77LHZb7/9MnTo0BxxxBG5//77ezBt79PZv7/v+NnPfpb+/fvnIx/5SPcG7OU6+/m2t7fn8ssvz4EHHpjKysr8yZ/8SX74wx/2UNrep7Of75133pnDDjssgwYNysiRI/MXf/EXef3113sobe/xyCOP5MQTT0x9fX0qKipyzz33vOdrXNt6n760funMXNauXZszzjgjH/7wh7PPPvtkxowZPRd0N/W1tU9n5vPYY4/lyCOPzPDhw1NVVZWDDz44119/fQ+mfW99be3Umfk8/PDDqaio2G574YUXejDxrvW1tVdn5nPOOefs8M/n0EMP7cHEu2btxu5wHXQd7El96TroGuga2FM6O5fvfve7OeSQQ1JVVZUPf/jDue2223oo6XvbK//9o9BLLFq0qDBgwIDCD37wg8Lzzz9f+NrXvlYYPHhw4dVXX93h+N/85jeFQYMGFb72ta8Vnn/++cIPfvCDwoABAwp///d/38PJe4fOfr5f+9rXCldffXXhF7/4ReGll14qzJ49uzBgwIDCihUrejh579DZz/cdb7zxRuFDH/pQYdq0aYXDDjusZ8L2Qnvy+Z500kmFSZMmFZYsWVJoamoq/Ou//mvhZz/7WQ+m7j06+/k++uijhX322afwne98p/Cb3/ym8OijjxYOPfTQwsknn9zDyfd+P/nJTwqXX3554R/+4R8KSQqLFy/e5XjXtt6nL61fOjuXpqamwle/+tXCrbfeWvjIRz5S+NrXvtazgd9DX1v7dHY+K1asKCxcuLCwcuXKQlNTU+H2228vDBo0qPC9732vh5PvWF9bO3V2Pg899FAhSeHFF18srF27tri99dZbPZx8x/ra2quz83njjTc6/LmsWbOmUFNTU7jyyit7NvhOWLuxO1wHXQd7Ul+6DroGugb2lM7O5cYbbywMGTKksGjRosKvf/3rwo9+9KPC//P//D+Fe++9t4eT79je+O8fvaYY+djHPlb4yle+0uHYwQcfXLjssst2OP7SSy8tHHzwwR2OnX/++YWPf/zj3ZaxN+vs57sjf/qnf1q46qqrujpan7Cnn+9pp51W+K//9b8Wrrzyyr1qUbO36ezn+8///M+F6urqwuuvv94T8Xq9zn6+3/72twsf+tCHOhz727/928IBBxzQbRn7gt1ZGLi29T59af3yftYKRx111F5XjPS1tU9XzOezn/1s4ayzzurqaHukr62dOjufd/5BaP369T2QrvP62trr/f73s3jx4kJFRUXht7/9bXfE6zRrN3aH6+D2XAe7T1+6DroGduQa2H06O5cjjjiiMGvWrA7Hvva1rxWOPPLIbsu4p/aWf//oFY/S2rJlS5YvX55p06Z1OD5t2rQ8/vjjO3zNE088sd344447Lk899VS2bt3abVl7oz35fN/t7bffzsaNG1NTU9MdEXu1Pf18b7nllvz617/OlVde2d0Re7U9+XzvvffeTJw4Mddcc03+w3/4DznooIMya9astLW19UTkXmVPPt/Jkyfntddey09+8pMUCoX84Q9/yN///d/n+OOP74nIfZprW+/Sl9YvXbFW2Jv0tbVPV8zn6aefzuOPP56jjjqqOyJ2Sl9bO72fP5/x48dn5MiROeaYY/LQQw91Z8zd1tfWXl3x38/NN9+cqVOn5sADD+yOiJ1i7cbucB3cnutg9+lL10HXwO25BnaPPZlLe3t79t133w7Hqqqq8otf/KJX/ntBT/x/4/5d8i7drKWlJdu2bUttbW2H47W1tWlubt7ha5qbm3c4/q233kpLS0tGjhzZbXl7mz35fN/t2muvzZtvvplTTz21OyL2anvy+b788su57LLL8uijj6Z//17xn2nJ7Mnn+5vf/CaPPfZY9t133yxevDgtLS254IIL8r//9//eq57zuTfYk8938uTJufPOO3Paaafl3/7t3/LWW2/lpJNOyrx583oicp/m2ta79KX1S1esFfYmfW3t837mc8ABB+R//a//lbfeeiuNjY358pe/3J1Rd0tfWzvtyXxGjhyZ73//+5kwYULa29tz++2355hjjsnDDz+cT37ykz0Re6f62trr/f7vwdq1a/PP//zPWbhwYXdF7BRrN3aH6+D/5TrY/frSddA1sCPXwO6zJ3M57rjj8v/9f/9fTj755Bx++OFZvnx5fvjDH2br1q298t8LeuL/G+9d/2v5HioqKjrsFwqF7Y691/gdHeePOvv5vuNHP/pRGhsb8+Mf/zj7779/d8Xr9Xb38922bVvOOOOMXHXVVTnooIN6Kl6v15m/v2+//XYqKipy5513prq6Okly3XXX5fOf/3y++93vpqqqqtvz9jad+Xyff/75fPWrX81f//Vf57jjjsvatWvz9a9/PV/5yldy880390TcPs21rffpS+uXPV0r7K362tpnT+bz6KOPZtOmTfn5z3+eyy67LP/v//v/5gtf+EJ3xtxtfW3t1Jk/nw9/+MP58Ic/XNw/4ogjsmbNmvyP//E/Sl6MvKOvrb329H8PFixYkA984AM5+eSTuynZnrF2Y3e4DroO9qS+dB10Dfwj18Du15m5XHHFFWlubs7HP/7xFAqF1NbW5pxzzsk111yTfv369UTcLtfd/9+4VxQjI0aMSL9+/bZrxNatW7ddc/SOurq6HY7v379/hg8f3m1Ze6M9+Xzfcdddd+Xcc8/N3/3d32Xq1KndGbPX6uznu3Hjxjz11FN5+umnc9FFFyX544W0UCikf//+eeCBB/KpT32qR7L3Bnvy93fkyJH5D//hPxQXJUlyyCGHpFAo5LXXXsuYMWO6NXNvsief79y5c3PkkUfm61//epLkP/7H/5jBgwfnP/2n/5Rvfetbve6nFPYmrm29S19av7yftcLeqK+tfd7PfBoaGpIk48aNyx/+8Ic0NjaW/B+E+traqav++/n4xz+eO+64o6vjdVpfW3u9nz+fQqGQH/7wh/niF7+YgQMHdmfM3Wbtxu5wHfy/XAe7X1+6DroG/l+ugd1rT+ZSVVWVH/7wh/ne976XP/zhD8U7r4YMGZIRI0b0ROwu1RP/37hXfMfIwIEDM2HChCxZsqTD8SVLlmTy5Mk7fM0RRxyx3fgHHnggEydOzIABA7ota2+0J59v8sefEjnnnHOycOHCkj97b2/W2c936NChefbZZ/PMM88Ut6985Sv58Ic/nGeeeSaTJk3qqei9wp78/T3yyCPz+9//Pps2bSoee+mll7LPPvvkgAMO6Na8vc2efL6bN2/OPvt0vLy889MJ77T77BnXtt6lL61f9nStsLfqa2ufrvrzKRQKaW9v7+p4ndbX1k5d9efz9NNP7xX/QN3X1l7v589n2bJleeWVV3Luued2Z8ROsXZjd7gO7pjrYPfoS9dB18D/yzWwe72fP5sBAwbkgAMOSL9+/bJo0aKccMIJ282xN+iR/2/cZV/j3s0WLVpUGDBgQOHmm28uPP/884UZM2YUBg8eXPjtb39bKBQKhcsuu6zwxS9+sTj+N7/5TWHQoEGF//Jf/kvh+eefL9x8882FAQMGFP7+7/++VFPYq3X28124cGGhf//+he9+97uFtWvXFrc33nijVFPYq3X28323K6+8snDYYYf1UNrep7Of78aNGwsHHHBA4fOf/3zhueeeKyxbtqwwZsyYwpe//OVSTWGv1tnP95Zbbin079+/cOONNxZ+/etfFx577LHCxIkTCx/72MdKNYW91saNGwtPP/104emnny4kKVx33XWFp59+uvDqq68WCgXXtr6gL61f9uRa9s7f7wkTJhTOOOOMwtNPP1147rnnShF/O31t7dPZ+cyfP79w7733Fl566aXCSy+9VPjhD39YGDp0aOHyyy8v1RQ66Gtrp87O5/rrry8sXry48NJLLxVWrlxZuOyyywpJCv/wD/9Qqil00NfWXnv69+2ss84qTJo0qafjvidrN3aH66DrYE/qS9dB18A/cg3sfp2dy4svvli4/fbbCy+99FLhX//1XwunnXZaoaamptDU1FSiGXS0N/77R68pRgqFQuG73/1u4cADDywMHDiwcPjhhxeWLVtWPHf22WcXjjrqqA7jH3744cL48eMLAwcOLHzwgx8s3HTTTT2cuHfpzOd71FFHFZJst5199tk9H7yX6Ozf339vb1vU7I06+/muWrWqMHXq1EJVVVXhgAMOKMycObOwefPmHk7de3T28/3bv/3bwp/+6Z8WqqqqCiNHjiyceeaZhddee62HU+/9HnrooV3+b6lrW9/Ql9YvnZ3Ljv5+H3jggT0behf62tqnM/P527/928Khhx5aGDRoUGHo0KGF8ePHF2688cbCtm3bSpB8x/ra2qkz87n66qsLf/Inf1LYd999C8OGDSt84hOfKNx3330lSL1zfW3t1dn5vPHGG4WqqqrC97///R5Ounus3dgdroOugz2pL10HXQNdA3tKZ+by/PPPFz7ykY8UqqqqCkOHDi385//8nwsvvPBCCVLv2N747x8VhYJ7YwEAAAAAgPLQ+x4wBgAAAAAAsIcUIwAAAAAAQNlQjAAAAAAAAGVDMQIAAAAAAJQNxQgAAAAAAFA2FCMAAAAAAEDZUIwAAAAAAABlQzECAAAAAACUDcUIAAAAAABQNhQjAAAAAABA2VCMAAAAAAAAZeP/B0oCGDMhWjU1AAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, axs = plt.subplots(1, 3, figsize=(20, 6))\n",
"axs = axs.flatten()\n",
"axs[0].hist(pm.draw(pm.Beta.dist(2, 2), 1000), ec=\"black\", color=\"slateblue\")\n",
"axs[1].hist(pm.draw(pm.Beta.dist(2, 5), 1000), ec=\"black\", color=\"slateblue\")\n",
"axs[2].hist(pm.draw(pm.Beta.dist(5, 2), 1000), ec=\"black\", color=\"slateblue\");"
]
},
{
"cell_type": "markdown",
"id": "3237bb49",
"metadata": {},
"source": [
"We'll now fit two models and estimate the implied treatment effect."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "763ca253",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"--------------------------------------------------------------------------------\n",
"Model 1: Normal Priors (No Variable Selection)\n",
"--------------------------------------------------------------------------------\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/nathanielforde/mambaforge/envs/CausalPy/lib/python3.13/site-packages/causalpy/experiments/instrumental_variable.py:187: UserWarning: Warning. The treatment variable is not Binary.\n",
" This is not necessarily a problem but it violates\n",
" the assumption of a simple IV experiment.\n",
" The coefficients should be interpreted appropriately.\n",
" warnings.warn(\n",
"Initializing NUTS using jitter+adapt_diag...\n",
"Multiprocess sampling (4 chains in 4 jobs)\n",
"NUTS: [beta_t, beta_z, chol_cov]\n",
"OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n",
"OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n",
"OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n",
"OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b332c2837f1849329b3b561a9765f3e5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/nathanielforde/mambaforge/envs/CausalPy/lib/python3.13/site-packages/pytensor/compile/function/types.py:1039: RuntimeWarning: invalid value encountered in accumulate\n",
" outputs = vm() if output_subset is None else vm(output_subset=output_subset)\n",
"/Users/nathanielforde/mambaforge/envs/CausalPy/lib/python3.13/site-packages/pytensor/compile/function/types.py:1039: RuntimeWarning: invalid value encountered in accumulate\n",
" outputs = vm() if output_subset is None else vm(output_subset=output_subset)\n",
"/Users/nathanielforde/mambaforge/envs/CausalPy/lib/python3.13/site-packages/pytensor/compile/function/types.py:1039: RuntimeWarning: invalid value encountered in accumulate\n",
" outputs = vm() if output_subset is None else vm(output_subset=output_subset)\n",
"/Users/nathanielforde/mambaforge/envs/CausalPy/lib/python3.13/site-packages/pytensor/compile/function/types.py:1039: RuntimeWarning: invalid value encountered in accumulate\n",
" outputs = vm() if output_subset is None else vm(output_subset=output_subset)\n"
]
},
{
"data": {
"text/html": [
"\n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Sampling 4 chains for 2_000 tune and 1_000 draw iterations (8_000 + 4_000 draws total) took 133 seconds.\n",
"The effective sample size per chain is smaller than 100 for some parameters. A higher number is needed for reliable rhat and ess computation. See https://arxiv.org/abs/1903.08008 for details\n",
"/Users/nathanielforde/mambaforge/envs/CausalPy/lib/python3.13/site-packages/causalpy/experiments/instrumental_variable.py:187: UserWarning: Warning. The treatment variable is not Binary.\n",
" This is not necessarily a problem but it violates\n",
" the assumption of a simple IV experiment.\n",
" The coefficients should be interpreted appropriately.\n",
" warnings.warn(\n",
"/Users/nathanielforde/mambaforge/envs/CausalPy/lib/python3.13/site-packages/causalpy/pymc_models.py:699: UserWarning: Variable selection priors specified. The 'mus' and 'sigmas' in the priors dict will be ignored for beta coefficients. Only 'eta' and 'lkj_sd' will be used.\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"--------------------------------------------------------------------------------\n",
"Model 2: Spike-and-Slab Priors\n",
"--------------------------------------------------------------------------------\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Initializing NUTS using jitter+adapt_diag...\n",
"Multiprocess sampling (4 chains in 4 jobs)\n",
"NUTS: [pi_beta_t, beta_t_raw, gamma_beta_t_u, pi_beta_z, beta_z_raw, gamma_beta_z_u, chol_cov]\n",
"OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n",
"OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n",
"OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n",
"OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "db312f02efe743c386a4f2b4449f8904",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/nathanielforde/mambaforge/envs/CausalPy/lib/python3.13/site-packages/pytensor/compile/function/types.py:1039: RuntimeWarning: invalid value encountered in accumulate\n",
" outputs = vm() if output_subset is None else vm(output_subset=output_subset)\n",
"/Users/nathanielforde/mambaforge/envs/CausalPy/lib/python3.13/site-packages/pytensor/compile/function/types.py:1039: RuntimeWarning: invalid value encountered in accumulate\n",
" outputs = vm() if output_subset is None else vm(output_subset=output_subset)\n",
"/Users/nathanielforde/mambaforge/envs/CausalPy/lib/python3.13/site-packages/pytensor/compile/function/types.py:1039: RuntimeWarning: invalid value encountered in accumulate\n",
" outputs = vm() if output_subset is None else vm(output_subset=output_subset)\n",
"/Users/nathanielforde/mambaforge/envs/CausalPy/lib/python3.13/site-packages/pytensor/compile/function/types.py:1039: RuntimeWarning: invalid value encountered in accumulate\n",
" outputs = vm() if output_subset is None else vm(output_subset=output_subset)\n"
]
},
{
"data": {
"text/html": [
"\n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Sampling 4 chains for 2_000 tune and 1_000 draw iterations (8_000 + 4_000 draws total) took 551 seconds.\n",
"There were 167 divergences after tuning. Increase `target_accept` or reparameterize.\n",
"The rhat statistic is larger than 1.01 for some parameters. This indicates problems during sampling. See https://arxiv.org/abs/1903.08008 for details\n",
"The effective sample size per chain is smaller than 100 for some parameters. A higher number is needed for reliable rhat and ess computation. See https://arxiv.org/abs/1903.08008 for details\n"
]
}
],
"source": [
"sample_kwargs = {\n",
" \"draws\": 1000,\n",
" \"tune\": 2000,\n",
" \"chains\": 4,\n",
" \"cores\": 4,\n",
" \"target_accept\": 0.95,\n",
" \"progressbar\": True,\n",
" \"random_seed\": 42,\n",
" \"mp_ctx\": \"spawn\",\n",
"}\n",
"\n",
"# =========================================================================\n",
"# Model 1: Normal priors (no selection)\n",
"# =========================================================================\n",
"print(\"\\n\" + \"-\" * 80)\n",
"print(\"Model 1: Normal Priors (No Variable Selection)\")\n",
"print(\"-\" * 80)\n",
"\n",
"result_normal = cp.InstrumentalVariable(\n",
" instruments_data=instruments_data,\n",
" data=data,\n",
" instruments_formula=instruments_formula,\n",
" formula=formula,\n",
" model=cp.pymc_models.InstrumentalVariableRegression(sample_kwargs=sample_kwargs),\n",
" vs_prior_type=None, # No variable selection\n",
")\n",
"\n",
"# =========================================================================\n",
"# Model 2: Spike-and-Slab priors\n",
"# =========================================================================\n",
"print(\"\\n\" + \"-\" * 80)\n",
"print(\"Model 2: Spike-and-Slab Priors\")\n",
"print(\"-\" * 80)\n",
"\n",
"result_spike_slab = cp.InstrumentalVariable(\n",
" instruments_data=instruments_data,\n",
" data=data,\n",
" instruments_formula=instruments_formula,\n",
" formula=formula,\n",
" model=cp.pymc_models.InstrumentalVariableRegression(sample_kwargs=sample_kwargs),\n",
" vs_prior_type=\"spike_and_slab\",\n",
" vs_hyperparams={\n",
" \"pi_alpha\": 2,\n",
" \"pi_beta\": 2,\n",
" \"slab_sigma\": 2,\n",
" },\n",
")"
]
},
{
"cell_type": "markdown",
"id": "2ccb6e0b",
"metadata": {},
"source": [
"The models have quite a distinct structure. Compare the normal IV model with non variable selection priors. "
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "e97a9ca2",
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pm.model_to_graphviz(result_normal.model)"
]
},
{
"cell_type": "markdown",
"id": "34f3a1b7",
"metadata": {},
"source": [
"Now compare the structure of the spike and slab model. "
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "4f8c2685",
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pm.model_to_graphviz(result_spike_slab.model)"
]
},
{
"cell_type": "markdown",
"id": "368660c8",
"metadata": {},
"source": [
"Despite seeing some divergences in our spike and slab model, most other sampler health metrics seem healthy"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "0755095c",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABiIAAAHiCAYAAABlbdSBAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAtcRJREFUeJzs3Xl8VOXd///3mZlsM9lI2JUAgooCior1rvXrckvFIm5tbytaFKFVS7WlilBr8eeKxbuCtt7uClZUUFyLioKCIiCyL2GHBMhG9plJZp85vz8iqREIWWayvp6PxzyanLnOdT4nQpnMez7XZZimaQoAAAAAAAAAACAGLK1dAAAAAAAAAAAA6LgIIgAAAAAAAAAAQMwQRAAAAAAAAAAAgJghiAAAAAAAAAAAADFDEAEAAAAAAAAAAGKGIAIAAAAAAAAAAMQMQQQAAAAAAAAAAIgZgggAAAAAAAAAABAztoYMikQiKigoUEpKigzDiHVNAAAAAAAAAACgDTNNU263W71795bFUn/PQ4OCiIKCAvXp0ycqxQEAAAAAAAAAgI7h4MGDOvHEE+sd06AgIiUlpXbC1NTU5lcGAAAAAAAAAADaLZfLpT59+tTmB/VpUBBxeDmm1NRUgggAAAAAAAAAACBJDdrOgc2qAQAAAAAAAABAzBBEAAAAAAAAAACAmCGIAAAAAAAAAAAAMdOgPSIAAAAAAAAAoDMKh8MKBoOtXQbQ4uLi4mS1WqMyF0EEAAAAAAAAAPyAaZoqKipSZWVla5cCtJr09HT17NmzQRtS14cgAgAAAAAAAAB+4HAI0b17d9nt9ma/EQu0J6ZpyuPxqLi4WJLUq1evZs1HEAEAAAAAAAAA3xMOh2tDiMzMzNYuB2gVSUlJkqTi4mJ17969Wcs0sVk1AAAAAAAAAHzP4T0h7HZ7K1cCtK7Dfweau08KQQQAAAAAAAAAHAXLMaGzi9bfAYIIAAAAAAAAAEDUXXzxxZo0aVJU53zggQc0bNiwqM6J2GOPCAAAAAAAAABooPxKryqqAy12vS6OeJ2QntTg8ePGjdOrr76q2267Tc8991yd5yZOnKhnn31WN998s+bMmRPlSo/07rvvKi4uLubX+b7c3Fz179//qM+tWrVK//Vf/9Wi9aAGQQQAAAAAAAAANEB+pVf//fdl8ociLXbNBJtFX0y+uFFhRJ8+fTRv3jzNmjWrdsNhn8+nN998U1lZWc2uKRgMNihgyMjIaPa1mmrJkiUaPHhwnWOx3HjcNE2Fw2HZbLzlfjQszQQAAAAAAAAADVBRHWjREEKS/KFIozswzj77bGVlZendd9+tPfbuu++qT58+Ouuss+qMXbRokS644AKlp6crMzNTo0eP1t69e2ufz83NlWEYeuutt3TxxRcrMTFRc+fOVSgU0h/+8Ifa86ZOnaqbb75Z11xzTe25P1yaqV+/fpo+fbrGjx+vlJQUZWVl6YUXXqhTz9SpU3XKKafIbrfrpJNO0rRp05q0UXJmZqZ69uxZ53E4PDm8vNNrr72mfv36KS0tTddff73cbnft+aZp6vHHH9dJJ52kpKQknXnmmVqwYEHt88uWLZNhGPr00081fPhwJSQkaPny5XK73brxxhvlcDjUq1cvzZo1q87P4aGHHtLQoUOPqPecc87R/fff3+j7bC8IIgAAAAAAAACgg7nllls0e/bs2u9feeUVjR8//ohx1dXVuuuuu7RmzRp9/vnnslgsuvbaaxWJ1A1cpk6dqj/84Q/avn27Ro4cqRkzZuj111/X7NmztWLFCrlcLr3//vvHreuJJ57Q8OHDtWHDBk2cOFG/+93vtGPHjtrnU1JSNGfOHG3btk1PPfWUXnzxRc2aNavpP4hj2Lt3r95//30tXLhQCxcu1Jdffqm//e1vtc//9a9/1ezZs/Xss88qOztbf/rTn/TrX/9aX375ZZ15pkyZoscee0zbt2/XGWecobvuuksrVqzQhx9+qMWLF2v58uVav3597fjx48dr27ZtWrNmTe2xzZs3a8OGDRo3blzU77OtoE8EAAAAAAAAADqYsWPH6t57763taFixYoXmzZunZcuW1Rn3i1/8os73L7/8srp3765t27ZpyJAhtccnTZqkn//857Xf//Of/9S9996ra6+9VpL09NNP6+OPPz5uXaNGjdLEiRMl1YQbs2bN0rJlyzRo0CBJNQHAYf369dPdd9+t+fPna8qUKY26//PPP18WS93P4TudTlmtVklSJBLRnDlzlJKSIqnm5/X555/r0UcfVXV1tWbOnKkvvvhCP/7xjyVJJ510kr7++ms9//zzuuiii2rnfOihh/TTn/5UkuR2u/Xqq6/qjTfe0KWXXipJmj17tnr37l07/sQTT9TIkSM1e/ZsnXvuubVjLrroIp100kmNusf2hCACAAAAAAAAADqYrl276oorrtCrr74q0zR1xRVXqGvXrkeM27t3r6ZNm6ZvvvlGpaWltZ0QBw4cqBNEDB8+vPZrp9OpQ4cO6Uc/+lHtMavVqnPOOeeIToofOuOMM2q/NgxDPXv2VHFxce2xBQsW6Mknn9SePXtUVVWlUCik1NTURt///Pnzddppp9U5djiEkGpCjsMhhCT16tWrto5t27bJ5/PVBgyHBQKBI5a2+v7PZd++fQoGg3V+LmlpaTr11FPrnPPb3/5W48eP18yZM2W1WvX666/riSeeaPQ9ticEEQAAAAAAAADQAY0fP1533HGHJOn//u//jjrmyiuvVJ8+ffTiiy+qd+/eikQiGjJkiAKBuvtSOByOI841DKPO96ZpHremH25ybRhGbXjxzTff6Prrr9eDDz6okSNHKi0tTfPmzWvSm/R9+vTRwIEDm1TH4f/96KOPdMIJJ9QZl5CQUOf77/9cDt//8X4uV155pRISEvTee+8pISFBfr//iM6UjoYgAgAAAIiBSCSsgNerUCCgSDgkMxKRGTFlmhFZrFZZbDbFJyYpPjFJhoWt2wAAABB9l19+eW2gMHLkyCOeLysr0/bt2/X888/r//2//ydJ+vrrr487b1pamnr06KFvv/229rxwOKwNGzZo2LBhTa53xYoV6tu3r+67777aY/v372/yfE11+umnKyEhQQcOHKizDNPxDBgwQHFxcfr222/Vp08fSZLL5dLu3bvrzGOz2XTzzTdr9uzZSkhI0PXXXy+73R71+2hLCCIAAACARoiEw6p2VsjjdMrrrJS3yi2v2y1flVvVleXyOJ3yVbkV8HoUiURqAojDn4AyTZmq+YSUYRgyLBZZrFYl2B1KSk1TSkaGkrtkypGRqdTMbkrt1l3JGZlHfKIKAAAAaAir1art27fXfv1DXbp0UWZmpl544QX16tVLBw4c0J///OcGzX3nnXfqscce08CBAzVo0CD985//VEVFRbNeuw4cOFAHDhzQvHnzdO655+qjjz7Se++916S5ysrKVFRUVOdYenq6EhMTj3tuSkqKJk+erD/96U+KRCK64IIL5HK5tHLlSiUnJ+vmm28+5nk333yz7rnnHmVkZKh79+76//6//08Wi+WIn8tvfvOb2qWjVqxY0aR7bE8IIgAAAICjCPp9cpUUy1lySM7iQ6osKlRFYb6qKysUDgYVDoUUCYe+G23UdDoYNcGCxWqVYbHKYrXIsNokw9B/fu8wagIJ05QZiSgSCqm6slzushIV7Q6rZqApw2KRLS5eSSmp6nHSQHXvd5K69e2vzBOzZDnKL5EAAADA0dS3v4LFYtG8efP0hz/8QUOGDNGpp56qf/zjH7r44ouPO+/UqVNVVFSkm266SVarVbfeeqtGjhx51MCjoa6++mr96U9/0h133CG/368rrrhC06ZN0wMPPNDouUaMGHHEsTfffFPXX399g85/+OGH1b17dz322GPat2+f0tPTdfbZZ+svf/lLvefNnDlTt99+u0aPHq3U1FRNmTJFBw8ePCIAOfnkk3X++eerrKxM5513XsNvrJ0yzAYs3OVyuZSWlian09mkjUEAAACAtspb5ZbzUJGcxUVyFh9SRWG+nMXF8lW5FAoGFA4Ga8dabXGy2myy2uJksdlktVllGNFfVsk0TUXCYYWDAQX9foWCgdrr29PS1HfoWeoz5Az1PnkQoQQAAEAM+Hw+5eTkqH///nXeQN6a79Tofx5/6aJoW3jnBRpyQlqLX7cxIpGITjvtNF133XV6+OGHW7ucNqO6ulonnHCCnnjiCU2YMKH2uGmaGjRokG677TbdddddrVhh/Y71d0FqXG5ARwQAAAA6hUgkrKqyMpUX5KmiMF8VhQUqyzsgj8tZs49DKCQZNcsm1QQOcUpIcsiWGtfiezjU1GCT1WZTfFLNWrGmaSoUCMjrcmnL0s+0bfkXSu3aXQN/9GMNHP5fSsns2qI1AgAAdEZdHPFKsFnkD0Va7JoJNou6OOJb7HoNtX//fn322We66KKL5Pf79fTTTysnJ0c33HBDa5fWqjZs2KAdO3boRz/6kZxOpx566CFJNd0ehxUXF+u1115Tfn6+brnlltYqtUURRAAAAKDDiYTDcpWWqKIgT+UFeSo5kKvy/IPyezwKBQKSapqCbXHxssXFy56SKovN1qb3YjAMQ3EJCYpLSJAkhQIBuUtLtPbDd7R58SfKGnKmTr/wv9W9/4A2fR8AAADt2QnpSfpi8sWqqA602DW7OOJ1QnpSi12voSwWi+bMmaPJkyfLNE0NGTJES5Ysqd33oDP7+9//rp07dyo+Pl7nnHOOli9frq5d//PBoR49eqhr16564YUX1KVLl1astOWwNBMAAADatUgkLFfJ4dAhXyUHclSWd0ABr1ehgF9SzZv4tviEmuAhIV4WS8dZzsg0Tfmrq+TzVCsuPkEnnDZYZ/50lHr0H9DapQEAALRb9S1HA3QmLM0EAACATslXXaWyvIMqO7hfxfv3qThnn/ye6iNCh7iERCWlpMrSwssqtTTDMJSYnKIER7ICPq9yN61X/o5tGjD8Rzpr5JUs2QQAAACg1RFEAAAAoM2KRMJyHiqqCR7yDqho3245iwoV9PsViYQlSXHxNcsVdYbQoT6GYSghya74xCT5PdXaseIrHdiySWeM+JlOv/C/ZYuLa+0SAQAAAHRSBBEAAABoM4J+n8rz81R6cL+Kc/epaM8u+aqrarsdLFar4uITZU9Lk8Xatvd0aC2GYSjRkayEJLuqXZVa/d585WxYq/Ovu1Hdsvq1dnkAAAAAOiGCCAAAALSaUDCosoP7dShnrwp371Rxzh4FfD5FQiHJUO0SS/aUVBmduNuhKQyLRcnpGQoFgzqUs0ef/PPvOvOyURr63yNlsXacPTIAAAAAtH0EEQAAAGgxZiSi8sJ8Hdq3RwU7t6to7275vdU1wYMMxScmKik5Rda4OLodosQWF6e0bj3kcTm15sN3dGjfHv3kV2PlSO/S2qUBAAAA6CQIIgAAABAzpmnKVVKs4py9Ktq3WwU7t8njdCoUDEhSzYbSDoKHWDMMQ460dAX9PuVu2qCKokJdeOM49Rp4amuXBgAAAKATIIgAAABAVAX9PhXt3a3C3TuVt22LXKUlCvp9Mk0pLj5ecYlJsqelEzy0griERKV27SZXySEtfuFp/ejqX+rU8y/kvwUAAADQCIZh6L333tM111xzzDHjxo1TZWWl3n///Rarqy0jiAAAAECzVVWUq3DXDuXtyFb+jm3yVbtlhiOy2GxKSEpSUnIKezy0ERarValdu6u6skIr3npdrpJiDb/q57JY2DcCAACgITzOSvk91S12vQS7Q/a09AaPHzdunF599dUjjo8cOVKLFi2KYmUt5+KLL9awYcP05JNPtnYpkqTCwkJ16VKz1Glubq769++vDRs2aNiwYbVjnnrqKZmm2UoVtj0EEQAAAGgSV2mx8rdnK3fzBhXn7FXA55VMKS4xUY7UdFnj4lq7RByDYRhK7pIhX5Vbmz9fJF91lc6/7tey8d8MAACgXh5npT74+yPyVlW12DWTkpN19eS/NiqMuPzyyzV79uw6xxISEqJcWV2BQEDx8fExvUZ9TNNUOByWzRb7t7x79ux53DFpaWkxr6M94WNpAAAAaDCPs1Lbli/Vwidn6N3HHtDX819T3vZsGRaLUjK7Ka17D9lT0wgh2onE5BQlOJK1c+VyLXv1BQX9vtYuCQAAoE3ze6rlraqSzRanhCR7zB82W5y8VVWN7sBISEhQz5496zwOf4JfqvlgyksvvaRrr71WdrtdJ598sj788MM6c2zbtk2jRo1ScnKyevToobFjx6q0tLT2+Ysvvlh33HGH7rrrLnXt2lU//elPJUkffvihTj75ZCUlJemSSy7Rq6++KsMwVFlZqerqaqWmpmrBggV1rvXvf/9bDodDbrf7iHsZN26cvvzySz311FMyDEOGYSg3N1fLli2TYRj69NNPNXz4cCUkJGj58uXau3evrr76avXo0UPJyck699xztWTJkjpz9uvXT9OnT9f48eOVkpKirKwsvfDCC7XPBwIB3XHHHerVq5cSExPVr18/PfbYY3V+foeXXOrfv78k6ayzzpJhGLr44otr6/7+0k1+v19/+MMf1L17dyUmJuqCCy7QmjVrap8/fD+ff/65hg8fLrvdrvPPP187d+485n/n9oQgAgAAAPUKBYPK3bxBS+e8oAWPTtOK+a+paM8uWW02pWZ2U1q37kp0JMvC0kvtUkKSXfa0NO3bsFZfzH5eAa+ntUsCAABo86xxcYpLSIj5I5Yf8HnwwQd13XXXafPmzRo1apRuvPFGlZeXS6pZeuiiiy7SsGHDtHbtWi1atEiHDh3SddddV2eOV199VTabTStWrNDzzz+v3Nxc/fKXv9Q111yjjRs36rbbbtN9991XO97hcOj6668/oltj9uzZ+uUvf6mUlJQj6nzqqaf04x//WL/97W9VWFiowsJC9enTp/b5KVOm6LHHHtP27dt1xhlnqKqqSqNGjdKSJUu0YcMGjRw5UldeeaUOHDhQZ94nnnhCw4cP14YNGzRx4kT97ne/044dOyRJ//jHP/Thhx/qrbfe0s6dOzV37lz169fvqD/Hb7/9VpK0ZMkSFRYW6t133z3quClTpuidd97Rq6++qvXr12vgwIEaOXJk7c/8sPvuu09PPPGE1q5dK5vNpvHjxx91vvaGpZkAAABwVOUF+dq7brX2rv1GVeXlMiMRxSfZlZLZjdChg4lLSJQjrYv2b9moz2c/r0tvuU3xSfbWLgsAAABNtHDhQiUnJ9c5NnXqVE2bNq32+3HjxmnMmDGSpOnTp+uf//ynvv32W11++eV69tlndfbZZ2v69Om141955RX16dNHu3bt0imnnCJJGjhwoB5//PHaMX/+85916qmn6n//938lSaeeeqq2bt2qRx99tHbMb37zG51//vkqKChQ7969VVpaqoULF2rx4sVHvZe0tDTFx8fLbrcfdUmkhx56qLYbQ5IyMzN15pln1n7/yCOP6L333tOHH36oO+64o/b4qFGjNHHixNqfzaxZs7Rs2TINGjRIBw4c0Mknn6wLLrhAhmGob9++x/pRq1u3brXXPdaSTdXV1Xr22Wc1Z84c/exnP5Mkvfjii1q8eLFefvll3XPPPbVjH330UV100UW1P88rrrhCPp9PiYmJx6yhPSCIAAAAQK1IJKyCHdu1fcWXyt+RrYDPK1t8vBxp7PnQ0cUlJCg5PUMHszdr6asv6r/H3aa4dv7LDgAAQGd1ySWX6Nlnn61zLCMjo873Z5xxRu3XDodDKSkpKi4uliStW7dOS5cuPSLMkKS9e/fWBhHDhw+v89zOnTt17rnn1jn2ox/96IjvBw8erH/961/685//rNdee01ZWVm68MILG3mXOmoN1dXVevDBB7Vw4UIVFBQoFArJ6/Ue0RHx/fs3DEM9e/asvf9x48bppz/9qU499VRdfvnlGj16tC677LIm1SfV/MyCwaB+8pOf1B6Li4vTj370I23fvv2YdfXq1UuSVFxcrKysrCZfvy0giAAAAICCfp/2rV+jbcuXqjw/T5FQSImOZKV16yHDMFq7PLSQmtCppjNi2b9e0iXjbpWtFTccBAAAQNM4HA4NHDiw3jFxP/igkWEYikQikqRIJKIrr7xSM2bMOOK8w2+OH77O95mmecTvD6ZpHjHHb37zGz399NP685//rNmzZ+uWW25p8u8dP6zhnnvu0aeffqq///3vGjhwoJKSkvTLX/5SgUCgzrj67v/ss89WTk6OPvnkEy1ZskTXXXedRowYccTeFg11+GdwtJ/ND499v67Dzx2uqz0jiAAAAOjEAj6vdq9eqewvl8hZXCzDMJSUkqq4hITWLg2tJC4hQY60dOVsWqe4+a/pwhvGyWK1tnZZAAAAaEFnn3223nnnHfXr1082W8PfQh40aJA+/vjjOsfWrl17xLhf//rXmjJliv7xj38oOztbN998c73zxsfHKxwON6iG5cuXa9y4cbr22mslSVVVVcrNzW3YDXxPamqqfvWrX+lXv/qVfvnLX+ryyy9XeXn5EZ0l8d99cKe++gYOHKj4+Hh9/fXXuuGGGyRJwWBQa9eu1aRJkxpdW3tEEAEAANAJBf0+7fpmhbYuXSxXabEsVquSu2TI2ohfMtBxxSUkyp6Sqt2rVyopOUU/uuZ/6IwBAABoR/x+v4qKiuocs9ls6tq1a4PO//3vf68XX3xRY8aM0T333KOuXbtqz549mjdvnl588UVZj/FBldtuu00zZ87U1KlTNWHCBG3cuFFz5syRVLcboEuXLvr5z3+ue+65R5dddplOPPHEeuvp16+fVq9erdzcXCUnJx8RBnzfwIED9e677+rKK6+UYRiaNm1aozsKZs2apV69emnYsGGyWCx6++231bNnT6Wnpx8xtnv37kpKStKiRYt04oknKjExUWlpaXXGOBwO/e53v9M999yjjIwMZWVl6fHHH5fH49GECRMaVVt7xS6DAAAAnYgZiWjvum/1wf8+opVvv66qinIlZ2QqJaMrIQTqiE+yKyHJrq1LF2vLF5+2djkAAABtSjgYVNDvj/kjHAw2qb5FixapV69edR4XXHBBg8/v3bu3VqxYoXA4rJEjR2rIkCH64x//qLS0NFksx35LuX///lqwYIHeffddnXHGGXr22Wd13333SZISftB1PWHCBAUCAY0fP/649UyePFlWq1Wnn366unXrdsR+D983a9YsdenSReeff76uvPJKjRw5UmeffXYD77xGcnKyZsyYoeHDh+vcc89Vbm6uPv7446Peu81m0z/+8Q89//zz6t27t66++uqjzvm3v/1Nv/jFLzR27FidffbZ2rNnjz799FN16dKlUbW1V4Z5tEW6fsDlciktLU1Op1OpqaktURcAAACirGR/jtYufE8FO7fLNE050rsQPuC4PM5KmZIuvPEWDTjnR8cdDwAA0BH4fD7l5OSof//+SkxMrD3ucVbqg78/Im9VVYvVkpScrKsn/1X2tPQWu2Y0Pfroo3ruued08ODBOsdff/11/fGPf1RBQUHt8kZoe471d0FqXG7Ab54AAAAdnNft0oZF/9aub1Yo4PPKkZauuITE458ISEpKTVNVeZlWzH9N9tQ09Tr51NYuCQAAoNXY09J19eS/yu+pbrFrJtgd7SqEeOaZZ3TuuecqMzNTK1as0P/+7//qjjvuqH3e4/EoJydHjz32mG677TZCiE6CIAIAAKCDMk1Te9eu1tqF78lVUqwEh0Np3Xqw1j8axTAMJWdkylVarK9en61Rd05WSmbD1hYGAADoiOxp6e0qGGhpu3fv1iOPPKLy8nJlZWXp7rvv1r333lv7/OOPP65HH31UF154YZ3j6NhYmgkAAKADcpUUa/V7b2n/1k2STCWnZ8hyjA3lgIaIRCJylRSr96mnaeTtf6CrBgAAdGj1LUcDdCbRWpqJzaoBAAA6EDMS0fblS/XhzMeUs3GdEh0OpWZ2I4RAs1ksFiV3yVDBru1a/f7basDnmQAAAABAEkszAQAAdBhVFeVateBN7d+8QRarRWndu8sw+NwJoscWH68kR4p2rlyubln9deqPL2jtkgAAAAC0AwQRAAAAHUDetq36ev5rcpUUy56WrnjaxxEjCQ6Hgn6fvv3gbWWecKK6ZvVr7ZIAAAAAtHF8RA4AAKAdi4TDWv/Jh1r88v+pqrxUqd26d7oQwpQUMU0FI6b8oUidRzBiKmyaYhGh6HJ0yZDP7dZXr8+R31Pd2uUAAAAAaOPoiAAAAGinvG6Xvn7zX9q/ZYNs8QlKyewmwzBau6yoipimfMGIfMGwfKGw/MGIAqGI/OGIgqGIwqapcKRhMYPNYijOZlGCzaIEm1UJNouS4qxKircqMc6qjvWTiy3DMJSckanSvP365t35uvDGWzrcnz0AAAAA0UMQAQAA0A6VHtyvZf96WeUFB+VIS1dcQvvugjAl+UMRVftD/3kEwgqGI3XGGd+NbYpQxFQoEJY3EJahYO11pZo31h3xVqUk2pScaFNaYpzirDQP18dqsykpOVV71qxSr4Gn6JT/Yr8IAAAAAEdHEAEAANDO5GxcpxXz58rrcio1s5ssVmtrl9RoYdNUlT+kKl9ILl9QVb6QQt91NtQXNkRriaUfzmN+V0+1PyTTWXMsKc6qLo54dbHHKyXRRsfEUSTY7Qr4vPr2gwXq1re/uvQ6obVLAgAAQD1yc3PVv39/bdiwQcOGDWvyPBdffLGGDRumJ598Mmq1oWPjY14AAADthGma2rT4Yy3710vyVVcptVv3dhNCmJKq/CHlVXq1tcCpNTnl2lbg0oFyjyo9wdoQ4vDY1vL9a3uDYRVWepVd4NSa3HLtLamS0xtkv4kfSO6SIY/Lqa/nvaZQINDa5QAAAKAFvPvuu3r44YejPu+WLVt00UUXKSkpSSeccIIeeughmWb9r8ANw6h92Gw2ZWVl6a677pLf768dM2fOnDrjDj9eeumlOs+fdtppR8z/1ltvyTAM9evXr8586enpUbnnY/H7/brzzjvVtWtXORwOXXXVVcrLy6v3nFAopL/+9a/q37+/kpKSdNJJJ+mhhx5SJPKfTnPTNPXAAw+od+/eSkpK0sUXX6zs7OyY3otERwQAAEC7EAoG9c07b2rHiq9ki49XSkZmm1+TP2KaqvQGVVEdULknqNAPlllqDw7/yhOOmCpx+1Xs9ivOalG3lAR1T0lQUlz7CIJiyTAMJXfJUNHeXdr42UcaPvra1i4JAAAAMZaRkRH1OV0ul37605/qkksu0Zo1a7Rr1y6NGzdODodDd999d73nzp49W5dffrmCwaA2bdqkW265RQ6Ho05Ykpqaqp07d9Y5Ly0trfZrh8Oh4uJirVq1Sj/+8Y9rj7/yyivKysqK0l023KRJk/Tvf/9b8+bNU2Zmpu6++26NHj1a69atk/UYH0ibMWOGnnvuOb366qsaPHiw1q5dq1tuuUVpaWn64x//KEl6/PHHNXPmTM2ZM0ennHKKHnnkEf30pz/Vzp07lZKSErP7oSMCAACgjfN7qvXFK89q+/JlSrDbZU9Na7MhRNg0VVrl144it77NrdDOIrdK3P52GUL80OFQIhiOqLDSq40HK7Ul36nSKr/a/901jy0uXvGJSdqy9DPl79ze2uUAAAB0apFIRDNmzNDAgQOVkJCgrKwsPfroo3XG7Nu3T5dcconsdrvOPPNMrVq1qva5srIyjRkzRieeeKLsdruGDh2qN998s875F198sSZNmlT7fb9+/TR9+nSNHz9eKSkpysrK0gsvvNCoul9//XX5fD7NmTNHQ4YM0c9//nP95S9/0cyZM4/bFZGenq6ePXuqT58+Gj16tK666iqtX7++zhjDMNSzZ886j6SkpNrnbTabbrjhBr3yyiu1x/Ly8rRs2TLdcMMNjbqX5nI6nXr55Zf1xBNPaMSIETrrrLM0d+5cbdmyRUuWLDnmeatWrdLVV1+tK664Qv369dMvf/lLXXbZZVq7dq2kmm6IJ598Uvfdd59+/vOfa8iQIXr11Vfl8Xj0xhtvxPSeCCIAAADasKqKcn32/D+Uu2mD7GnpSrA7WrukI5iSKr1B7S6u0trcCu0urlKFJ1D7y0JHXMro8D1V+UPaXVyl9fsrlF/pVfg4vyB1ZInJKQr5/Vq14E35PZ7WLgcAAKDTuvfeezVjxgxNmzZN27Zt0xtvvKEePXrUGXPfffdp8uTJ2rhxo0455RSNGTNGoVBIkuTz+XTOOedo4cKF2rp1q2699VaNHTtWq1evrve6TzzxhIYPH64NGzZo4sSJ+t3vfqcdO3Y0uO5Vq1bpoosuUkJCQu2xkSNHqqCgQLm5uQ2eZ9euXVq6dKnOO++8Bp9z2IQJEzR//nx5vns9O2fOHF1++eVH/PwaYvDgwUpOTj7mY/Dgwcc8d926dQoGg7rssstqj/Xu3VtDhgzRypUrj3neBRdcoM8//1y7du2SJG3atElff/21Ro0aJUnKyclRUVFRnXkTEhJ00UUX1TtvNLA0EwAAQBvlLC7S5y8/q9K8A0rJyJQ1Lq61S6rDF4rokMun4u86HurbZLqjC4YjOlDuUX6lV73TktQzLVE2S9vsWomVmiWaMlVecFDrPnpf5/9Py35qDAAAAJLb7dZTTz2lp59+WjfffLMkacCAAbrgggvqjJs8ebKuuOIKSdKDDz6owYMHa8+ePRo0aJBOOOEETZ48uXbsnXfeqUWLFuntt9+u9839UaNGaeLEiZKkqVOnatasWVq2bJkGDRrUoNqLiorq7MMgqTYAKCoqUv/+/Y957pgxY2S1WhUKheT3+zV69Gjde++9dcY4nU4lJyfXfp+cnKyioqI6Y4YNG6YBAwZowYIFGjt2rObMmaOZM2dq3759DbqH7/v4448VDAaP+XxcPb/fFRUVKT4+Xl26dKlzvEePHkfU/H1Tp06V0+nUoEGDZLVaFQ6H9eijj2rMmDG18x6e54fz7t+//7j31BwEEQAAAG1QWd5Bff7KM6o8VKTUzG5tZlNqU1KlJ6gip1eV3mCd8KGzhhDfF46YOljhUYHTqxPTawIJSxtdRisWrDabEu3J2rnyK2UNPkMnnj6ktUsCAADoVLZv3y6/369LL7203nFnnHFG7de9evWSJBUXF2vQoEEKh8P629/+pvnz5ys/P19+v19+v18OR/3d2d+f8/AySMXFxY2q/4dL0B7usj7e0rSzZs3SiBEjFA6HtWfPHt11110aO3as5s2bVzsmJSWlznJNFsvRFwsaP368Zs+eraysLFVVVWnUqFF6+umnG3UfktS3b99Gn3M8pmnW+7OYP3++5s6dqzfeeEODBw/Wxo0bNWnSJPXu3bs2mJKO/nOO9fK/BBEAAABtzKGcvfriledUVV6q1K7dZLG0fggRNms2ay6s9MkXCuvwS1TCh6MLR0ztL/eowOlTVoZd3VIS1FniiASHQ67SEn3z3nxd1f8kxSfZW7skAACATuP7ex7U5/ufxj/8BnQkUrPz2RNPPKFZs2bpySef1NChQ+VwODRp0iQFAoEGz3l43sNzNkTPnj2P+LT/4SDjeEsj9ezZUwMHDpQknXrqqXK73RozZoweeeSR2uMWi6X26/rceOONmjJlih544AHddNNNstma9hb64MGD6+0y6Nu3r7Kzs4/6XM+ePRUIBFRRUVGnK6K4uFjnn3/+Mee855579Oc//1nXX3+9JGno0KHav3+/HnvsMd18883q2bOnpJrOiMMB1OF5m7L8VGOwRwQAAEAbkr9zu5a8+H+qqihTatfurR5CBMMRHazwaN3+CuWUVssXCksigGioYDiivSVV2pxXKZfv2G3ZHUnNEk0ZKi/I0/pP/t3a5QAAAHQqJ598spKSkvT55583eY7ly5fr6quv1q9//WudeeaZOumkk7R79+4oVnl0P/7xj/XVV1/VCTw+++wz9e7d+4glm47H+l1HudfrbXQdGRkZuuqqq/Tll19q/PjxjT7/sI8//lgbN2485uPjjz8+5rnnnHOO4uLitHjx4tpjhYWF2rp1a71BhMfjOaLTw2q11gZC/fv3V8+ePevMGwgE9OWXX9Y7bzTQEQEAANBG5O3I1tI5L8hXVaXUrt1j3hpbn2A4ogKnT0VOnyKdeAPmaPEEwsoucKlrcoL6ZtoVb+3Ynwey2mxKSHJo+4pl6nvGMPUaeGprlwQAANApJCYmaurUqZoyZYri4+P1k5/8RCUlJcrOztaECRMaNMfAgQP1zjvvaOXKlerSpYtmzpypoqIinXbaaTGt/YYbbtCDDz6ocePG6S9/+Yt2796t6dOn6/777z/u70aVlZUqKipSJBLR7t279dBDD+mUU05pcs1z5szRM888o8zMzCadLzVvaaa0tDRNmDBBd999tzIzM5WRkaHJkydr6NChGjFiRO24Sy+9VNdee63uuOMOSdKVV16pRx99VFlZWRo8eLA2bNigmTNn1gYqhmFo0qRJmj59uk4++WSdfPLJmj59uux2u264IbZ7vBFEAAAAtAH5O7dr2ZwX5a+uUmrXbq0WQoQipvIrvQQQMVJW5Vd5dUBZGXb1TEvs0Ms1JSYny1VSrNXvvqXRk6bKFh/f2iUBAAB0CtOmTZPNZtP999+vgoIC9erVS7fffnujzs/JydHIkSNlt9t166236pprrpHT6Yxh1TVvvi9evFi///3vNXz4cHXp0kV33XWX7rrrruOee8stt0j6z94UF154oaZPn97kZZWSkpIavMxVrMyaNUs2m03XXXedvF6vLr30Us2ZM6e220OS9u7dq9LS0trv//nPf2ratGmaOHGiiouL1bt3b9122226//77a8dMmTJFXq9XEydOVEVFhc477zx99tlnSklJien9GKZ5/N8wXS6X0tLS5HQ6lZqaGtOCAAAAOpuCXdv1xezn5XW7Wy2ECJumCit9yq/0EkC0kOQEmwZ2T1ZSXOvvARIr4WBQVZXlOvfKX2jYyCtauxwAAIAG8/l8ysnJUf/+/ZWYmNja5QCtpr6/C43JDTp2TzgAAEAb19ohhCnpkMun9fsrdLDCQwjRgqr9IW06WKn8Sm+H3XPDGhcnW3y8Nn/xqSoK81u7HAAAAACthCACAACglRTu3qkvZr/QaiFEpTeojQcrta+0WqFIR30rvO0yv3scKPdoa75T3mC4tUuKCXtqunxVbn37/tsyv9skDwAAAEDnQhABAADQCg7l7P2uE8LV4iGEPxTRzkNubS90yddB3/xub6r9IW3Oc+qQy9fhuiMMw5AjNV0Ht2/V3nXftnY5AAAAAFoBQQQAAEALKz24X1+88pw8rsoWDSFMSQVOrzYerFRFdaBFromGMSVFTFP7Squ1s8itYAfrUIlLTJRMad1H78tb5W7tcgAAAAC0MIIIAACAFlRZVKjPX35W7vIypWa2XAjh9oe0Oa9S+8tq9oHoWG9zdyyVnoA2HayUyxds7VKiKrlLhpwlh7Tx04WtXQoAAACAFkYQAQAA0ELc5aVa8vIzcpYcqumEsMT+pVjYNJVbVq2t+U55AizD1B6YkoLhiLILXB1qI2uL1aqEJId2rlyu4tx9rV0OAAAAgBZEEAEAANACvG6XPn/5OZUX5Ck1s5ssLRBCOL/bjLrQ6Yv5tRAbB8o92lHk6jCbiScmJyvg82rNh+8oEiYYAwAAADoLgggAAIAYC/i8WjrnBRXn7lVKRldZrNaYXi/yXRfEtkKXAqFITK+F2HN6gtqc55S3A2wsbhiGHGldVLh7p3Z/u6q1ywEAAADQQggiAAAAYigUDOqr12crb0e2ktMzZLXZYnq96kBYm/KcdEF0IKakQCiszXlOVXja/ybjcQkJMgxDGxb9W163q7XLAQAAANACCCIAAABixIxE9M2CN5WzYa0cqemyxcfH7lqSilw+bcmrlL8DfHIedZmq6XTZUeTuEPtGONK7yFVarM2ff9rapQAAAHQqubm5MgxDGzdubNY8F198sSZNmhSVmtA5EEQAAADEgGmaWv/Jh9qx8kslOpIVl5gYs2uFIqZ2FrmVU1otU2r3b1KjfgfKPdp9yK2w2X7/S9dsXG3XjhVfqrwgr7XLAQAAQCO9++67evjhh6M6p8/n07hx4zR06FDZbDZdc801DTrPMIzah81mU1ZWlu666y75/f7aMXPmzKkz7vDjpZdeqvP8aaeddsT8b731lgzDUL9+/erMl56e3pzbPS6/368777xTXbt2lcPh0FVXXaW8vPpfO/fr1++o9/n73/++dsyhQ4c0btw49e7dW3a7XZdffrl2794d03uRCCIAAABiYsfXy7Txs48Vl5CoBLsjZtdx+0PadLBSlR1gyR40XFl1QNn5LgXC7XcPkMTkFPk91Vr30Qcy23GoAgAA0BllZGQoJSUlqnOGw2ElJSXpD3/4g0aMGNGoc2fPnq3CwkLl5OTomWee0WuvvaZHHnmkzpjU1FQVFhbWedx44421zzscDhUXF2vVqrp7mb3yyivKyspq+o010aRJk/Tee+9p3rx5+vrrr1VVVaXRo0crHD52B/yaNWvq3N/ixYslSf/zP/8jqeYDc9dcc4327dunDz74QBs2bFDfvn01YsQIVVdXx/R+CCIAAACiLHfjOq1+/21ZLBYlpaTG5BqmpEKnT9n5TgXCEbogOiFPIKTNeU5VB9rnUlyGYciekqaD2Zt1MHtLa5cDAADQYUQiEc2YMUMDBw5UQkKCsrKy9Oijj9YZs2/fPl1yySWy2+0688wz67z5XlZWpjFjxujEE0+U3W7X0KFD9eabb9Y5/4dLM/Xr10/Tp0/X+PHjlZKSoqysLL3wwguNqtvhcOjZZ5/Vb3/7W/Xs2bNR56anp6tnz57q06ePRo8erauuukrr16+vM8YwDPXs2bPOIykpqfZ5m82mG264Qa+88krtsby8PC1btkw33HBDo+ppLqfTqZdffllPPPGERowYobPOOktz587Vli1btGTJkmOe161btzr3t3DhQg0YMEAXXXSRJGn37t365ptv9Oyzz+rcc8/VqaeeqmeeeUZVVVVH/DeONoIIAACAKCrau1vL5/1LoUBA9rT0mFwjYpraU1yl3LJqAohOzJQUCke0Nd+pSm+wtctpkvikJIVDIa3/5AOFQ+3zHgAAANqae++9VzNmzNC0adO0bds2vfHGG+rRo0edMffdd58mT56sjRs36pRTTtGYMWMUCoUk1SyRdM4552jhwoXaunWrbr31Vo0dO1arV6+u97pPPPGEhg8frg0bNmjixIn63e9+px07dsTsPo9l165dWrp0qc4777xGnzthwgTNnz9fHo9HUs0STJdffvkRP7+GGDx4sJKTk4/5GDx48DHPXbdunYLBoC677LLaY71799aQIUO0cuXKBl0/EAho7ty5Gj9+vAzDkKTa5aoSv7d0sNVqVXx8vL7++utG32Nj2GI6OwAAQCdSUVSgZa++KF+VW6ldu9e+2IsmfyiiHUUuedrpp+ARXaZq2qu3F7o0oFuyuqcktHZJjeZI76KS/bnateprnfb/LmntcgAAANo1t9utp556Sk8//bRuvvlmSdKAAQN0wQUX1Bk3efJkXXHFFZKkBx98UIMHD9aePXs0aNAgnXDCCZo8eXLt2DvvvFOLFi3S22+/Xe+b+6NGjdLEiRMlSVOnTtWsWbO0bNkyDRo0KNq3eYQxY8bIarUqFArJ7/dr9OjRuvfee+uMcTqdSk5Orv0+OTlZRUVFdcYMGzZMAwYM0IIFCzR27FjNmTNHM2fO1L59+xpd08cff6xg8NgftomLizvmc0VFRYqPj1eXLl3qHO/Ro8cRNR/L+++/r8rKSo0bN6722KBBg9S3b1/de++9ev755+VwODRz5kwVFRWpsLCwQfM2FUEEAABAFHiclVo6+3m5ykpiFkK4fCHtLHIpHKEPAkfaW1IlfyisE7vYFf0/fbFji4uTxWrVxsWfqN9Zw5WUHN21hgEAADqT7du3y+/369JLL6133BlnnFH7da9evSRJxcXFGjRokMLhsP72t79p/vz5ys/Pl9/vl9/vl8NR/95335/z8DJIxcXFzbibhps1a5ZGjBihcDisPXv26K677tLYsWM1b9682jEpKSl1lmuyWI6+WND48eM1e/ZsZWVlqaqqSqNGjdLTTz/d6Jr69u3b+Bs5DtM0G/y75ssvv6yf/exn6t27d+2xuLg4vfPOO5owYYIyMjJktVo1YsQI/exnP4t6rT9EEAEAANBMQZ9PS199SaV5B5SS2fWYL2ib45DLp5xSlmJC/fIqvAqGTfXv6mhXYYQjLV2ushJt/eIznXvVL1q7HAAAgHbr+3se1Of7n8Y//MZ2JBKRVLPE0qxZs/Tkk09q6NChcjgcmjRpkgKBQIPnPDzv4TljrWfPnho4cKAk6dRTT5Xb7daYMWP0yCOP1B63WCy1X9fnxhtv1JQpU/TAAw/opptuks3WtLfQBw8erP379x/z+b59+yo7O/uoz/Xs2VOBQEAVFRV1uiKKi4t1/vnnH/fa+/fv15IlS/Tuu+8e8dw555yjjRs3yul0KhAIqFu3bjrvvPM0fPjwBtxV0xFEAAAANEMkHNbyea8qf2e2ktMzZLVG9+WVKSm3rFpFTl9U50XHdcjlUzhiakD35HazIZzFalV8YpK2f71Mp/zXT5TWvXGbEwIAAKDGySefrKSkJH3++ef6zW9+06Q5li9frquvvlq//vWvJdUEFLt379Zpp50WzVJjymq1SpK8Xm+jz83IyNBVV12lt956S88991yTa2jO0kznnHOO4uLitHjxYl133XWSpMLCQm3dulWPP/74ca89e/Zsde/evXb5raNJS0uTVLOB9dq1a/Xwww8fd97mIIgAAABoItM0tebDd7R37beyp6bJFh8f1fnDpqldh9yq9LCJLxqntMqvUCSiU3ukyBKDZcJiISklVc6SQ9rw6Ue6eOyE1i4HAACgXUpMTNTUqVM1ZcoUxcfH6yc/+YlKSkqUnZ2tCRMa9hpr4MCBeuedd7Ry5Up16dKldg+Blggitm3bpkAgoPLycrndbm3cuFFSzd4N9amsrFRRUVFtaPLQQw/plFNOaXLNc+bM0TPPPKPMzMwmnS81b2mmtLQ0TZgwQXfffbcyMzOVkZGhyZMna+jQoRoxYkTtuEsvvVTXXnut7rjjjtpjkUhEs2fP1s0333zUbo63335b3bp1U1ZWlrZs2aI//vGPuuaaa+psjB0LBBEAAABNtO2rL7R12WIlJNkVn9iwFuiGCoQj2l7IptRoukpPUDuK3Dq1Z4qs7SCMMAxDiY4U5WxYq0HnX6ieA05u7ZIAAADapWnTpslms+n+++9XQUGBevXqpdtvv71R5+fk5GjkyJGy2+269dZbdc0118jpdMaw6hqjRo2qs5zRWWedJanmQ2D1ueWWWyT9Z2+KCy+8UNOnT2/yskpJSUkNXuYqVmbNmiWbzabrrrtOXq9Xl156qebMmVPb7SFJe/fuVWlpaZ3zlixZogMHDmj8+PFHnbewsFB33XWXDh06pF69eummm27StGnTYnovkmSYx/uvKMnlciktLU1Op1OpqakxLwoAAKCt2795o5a++oLMSESO9C7HP6ERPIGwthW6FApH2BMCzZaSaNOgnqmyWdp+GGGappwlh3TioMH62e/vkhGD/VYAAAAawufzKScnR/3791diYmJrlwO0mvr+LjQmN+CVPQAAQCMV5+7T8jdfVSgQkD0tPapzO71Bbcl3EkIgaty+UE2wFWn7f6IMw5AjNV2Fe3Zq/5aNrV0OAAAAgCghiAAAAGgEV0mxlr76orxup1Iyu8qI4pI3ZdUBbS90KWKahBCIKo8/pOwCp4LtIIyIS0xUJBzRhk8XKhxifxQAAACgIyCIAAAAaCCv26XPZz8nZ3GRUjK7RTWEKHL5tOuQmwACMWFK8gbCys53KhiOtHY5x+VI76LSA/u1e/XK1i4FAAAAQBQQRAAAADRAKBDQl6+9opLcHKVkdJUlSmvXm5IOlHuUU1odlfmAYzEl+YJhZRe42nxnhC0uThaLRZuWLFLA62ntcgAAAAA0E0EEAADAcZiRiFYueF0HszfL0aWLrDZbdOaVtK+kSvmV3qjMBxzP4TBiW4Gzze8Z4UjvIlfJIW3/ellrlwIAAACgmQgiAAAAjmPDpwu1a9UKJSanKC4+ISpzRkxTO4vcKnb7ozIf0FCHl2naVtC2N7C2WK2yxsVp67Il8ricrV0OAAAAgGYgiAAAAKjHrtUrtPHTjxSXkKAEuz0qc4YiprYVulThCURlPqCxTEnVgZC2F7oUNttuGGFPTVd1ZYWyly1p7VIAAAAANANBBAAAwDHk7cjWqgVvSjKVlJIalTmDEVPbClxy+0JRmQ9ojip/2w4jLBaL4hOTtP3rZXKVFLd2OQAAAACaiCACAADgKMryDuqrubMV8HrlSM+IypyBcETZ+U55AoQQaDvcvpB2FLoVaaNhRFJKqnzVVdr8xaetXQoAAACAJiKIAAAA+IGq8jItnfO8qirKlJrZVYZhNHtOXzCiLflO+YJhtc23e9GZuXxB7TpU1Sb/bBqGoQS7Q3vXfKPygrzWLgcAAKBdy83NlWEY2rhxY7PmufjiizVp0qSo1ITOgSACAADge/wej5a++oLKC/KVmtlNhqX5L5c8gbC2FDgVDEXa5Bu9gCRVeALaW9I2w4hER7L8Xo82Lf6ktUsBAACApHfffVcPP/xwVOdctmyZrr76avXq1UsOh0PDhg3T66+/ftzzDMOofdhsNmVlZemuu+6S3++vHTNnzpw64w4/XnrppTrPn3baaUfM/9Zbb8kwDPXr16/OfOnp6c2+5/r4/X7deeed6tq1qxwOh6666irl5dX/wZxQKKS//vWv6t+/v5KSknTSSSfpoYceUiQSqR0zbty4I34O//Vf/xXTe5EkW8yvAAAA0E6EgkF9NfcVFe7ZpeSMTFms1mbPWeUPaVuhS5GI2Sbf4AW+r8Ttl81iqF+mo7VLqcMwDCU5UpS7ab0O5exVj/4DWrskAACATi0jIzrL137fypUrdcYZZ2jq1Knq0aOHPvroI910001KTU3VlVdeWe+5s2fP1uWXX65gMKhNmzbplltukcPhqBOWpKamaufOnXXOS0tLq/3a4XCouLhYq1at0o9//OPa46+88oqysrKidJcNN2nSJP373//WvHnzlJmZqbvvvlujR4/WunXrZD3G76ozZszQc889p1dffVWDBw/W2rVrdcsttygtLU1//OMfa8ddfvnlmj17du338fHxMb8fOiIAAAAkmaap1e/OV+7m9XKkpcsWF9fsOd2+kLILXAoTQqAdKXT6VOD0tnYZR4i32xX0+7Rp8ccy2+h+FgAAAG1BJBLRjBkzNHDgQCUkJCgrK0uPPvponTH79u3TJZdcIrvdrjPPPFOrVq2qfa6srExjxozRiSeeKLvdrqFDh+rNN9+sc/4Pl2bq16+fpk+frvHjxyslJUVZWVl64YUXGlX3X/7yFz388MM6//zzNWDAAP3hD3/Q5Zdfrvfee++456anp6tnz57q06ePRo8erauuukrr16+vM8YwDPXs2bPOIykpqfZ5m82mG264Qa+88krtsby8PC1btkw33HBDo+6luZxOp15++WU98cQTGjFihM466yzNnTtXW7Zs0ZIlS4553qpVq3T11VfriiuuUL9+/fTLX/5Sl112mdauXVtnXEJCQp2fQyyCpR8iiAAAAJ2eaZrasGihtn+9TImOZMUlJDZ7TqcvWNMJwRumaIf2l3lUUuU//sAWZBiGklJSlbc9W0V7drV2OQAAAG3WvffeqxkzZmjatGnatm2b3njjDfXo0aPOmPvuu0+TJ0/Wxo0bdcopp2jMmDEKhUKSJJ/Pp3POOUcLFy7U1q1bdeutt2rs2LFavXp1vdd94oknNHz4cG3YsEETJ07U7373O+3YsaNZ9+J0Ohv9JvmuXbu0dOlSnXfeeY2+3oQJEzR//nx5PB5JNUswXX755Uf8/Bpi8ODBSk5OPuZj8ODBxzx33bp1CgaDuuyyy2qP9e7dW0OGDNHKlSuPed4FF1ygzz//XLt21bxe3rRpk77++muNGjWqzrhly5ape/fuOuWUU/Tb3/5WxcXFjb6/xmJpJgAA0Ont+uZrbfx0oeISEpRgb/6SNJXeoHYUuUQGgfZsT3GV4qwWpSc1vzsoWuITk+Srcmvj4o/Vc+ApUdlIHgAAoCNxu9166qmn9PTTT+vmm2+WJA0YMEAXXHBBnXGTJ0/WFVdcIUl68MEHNXjwYO3Zs0eDBg3SCSecoMmTJ9eOvfPOO7Vo0SK9/fbb9b65P2rUKE2cOFGSNHXqVM2aNUvLli3ToEGDmnQvCxYs0Jo1a/T8888fd+yYMWNktVoVCoXk9/s1evRo3XvvvXXGOJ1OJScn136fnJysoqKiOmOGDRumAQMGaMGCBRo7dqzmzJmjmTNnat++fY2u/+OPP1YwGDzm83H1dOEXFRUpPj5eXbp0qXO8R48eR9T8fVOnTpXT6dSgQYNktVoVDof16KOPasyYMbVjfvazn+l//ud/1LdvX+Xk5GjatGn67//+b61bt04JCQmNuMPGIYgAAACd2oGtm/TNO/MkSUkpqc2er7w6oF2H3CzFhA5hZ5Fbg3unKjmhbfzacLgronDXDuXvyNaJpw1p7ZIAAADalO3bt8vv9+vSSy+td9wZZ5xR+3WvXr0kScXFxRo0aJDC4bD+9re/af78+crPz5ff75ff75fDUf+Htr4/5+FlkJr6Sftly5Zp3LhxevHFF+vtHDhs1qxZGjFihMLhsPbs2aO77rpLY8eO1bx582rHpKSk1FmuyWI5+mJB48eP1+zZs5WVlaWqqiqNGjVKTz/9dKPvoW/fvo0+53hM06z3wzjz58/X3Llz9cYbb2jw4MHauHGjJk2apN69e9cGU7/61a9qxw8ZMkTDhw9X37599dFHH+nnP/951Gs+rG38RgEAANAKDuXs1Vevz1HQ71dKZtdmz1da7dfuQ1VRqAxoGyKmqe2FLg09IU2Jcc3fvD0a4hOT5HW7tGnxJzph0GC6IgAAAL7n+3se1Of7n8Y//HoqEolIqlliadasWXryySc1dOhQORwOTZo0SYFAoMFzHp738JyN8eWXX+rKK6/UzJkzddNNNzXonJ49e2rgwIGSpFNPPVVut1tjxozRI488UnvcYrHUfl2fG2+8UVOmTNEDDzygm266STZb095CHzx4sPbv33/M5/v27avs7OyjPtezZ08FAgFVVFTU6YooLi7W+eeff8w577nnHv35z3/W9ddfL0kaOnSo9u/fr8cee6w2iPihXr16qW/fvtq9e3dDbqvJCCIAAECnVHmoSEvnvCCvy6nUbt2b/WZmSZVfe4oJIdDxhCOmtn0XRsRZ28YWc/aUNBXt3a2D2VuUNeSM458AAADQSZx88slKSkrS559/rt/85jdNmmP58uW6+uqr9etf/1pSTUCxe/dunXbaadEs9aiWLVum0aNHa8aMGbr11lubPI/VWvMhGq/X2+hzMzIydNVVV+mtt97Sc8891+QamrM00znnnKO4uDgtXrxY1113nSSpsLBQW7du1eOPP37M8zwezxGdHlartd5AqKysTAcPHqztjIkVgggAANDpeFxOfTH7OblKi5XatfkhRLHbr70lhBDomExJgVBEO4vcOr13qixtoAMhLjFRHrdTm5Z8oj6nD5FxjLZ6AACAziYxMVFTp07VlClTFB8fr5/85CcqKSlRdna2JkyY0KA5Bg4cqHfeeUcrV65Uly5dNHPmTBUVFcU8iFi2bJmuuOIK/fGPf9QvfvGL2r0Q4uPjj7thdWVlpYqKimpDk4ceekinnHJKk2ueM2eOnnnmGWVmZjbpfKl5SzOlpaVpwoQJuvvuu5WZmamMjAxNnjxZQ4cO1YgRI2rHXXrppbr22mt1xx13SJKuvPJKPfroo8rKytLgwYO1YcMGzZw5U+PHj5ckVVVV6YEHHtAvfvEL9erVS7m5ufrLX/6irl276tprr21yvQ1BEAEAADqVoM+nZa++qNID+5WS2fWY64I2FCEEOgNTktsf0t6Sag3snqzWjyIke2q6inP2aP/WTep3xlmtXQ4AAECbMW3aNNlsNt1///0qKChQr169dPvttzfq/JycHI0cOVJ2u1233nqrrrnmGjmdzhhWXfPmv8fj0WOPPabHHnus9vhFF12kZcuW1XvuLbfcIuk/e1NceOGFmj59epOXVUpKSmrwMlexMmvWLNlsNl133XXyer269NJLNWfOnNpuD0nau3evSktLa7//5z//qWnTpmnixIkqLi5W7969ddttt+n++++XVNMdsWXLFv3rX/9SZWWlevXqpUsuuUTz589XSkpKTO/HME3zuHspulwupaWlyel0KjW1+Zs4AgAAtIZIOKxlr72kvWu+kSM9Q7b4+GbNRwiBzigrw64T0lv3l7LDnCXF6nHSAI2eNFUWS9vYwwIAAHQMPp9POTk56t+/vxITE1u7HKDV1Pd3oTG5AT3MAACgUzBNU6vfe0t7165WUmoaIQTQRAfKPSqrrn+jwpZiT0tTcW6O9m/e2NqlAAAAAKgHQQQAAOgUNn32sbK/+lwJdofiE5v3ae5it48QAp3anuIqVflDrV2G4uITZEYi2rxkkSLhcGuXAwAAAOAYCCIAAECHt3PV11q/6N+yxcUr0ZHcrLkOuXzaW1IdpcqA9sk0Te0ocisQjrR2KXKkpavkQI5yN61v7VIAAAAAHANBBAAA6NAObN2kb955UzJN2VPTmjVXkcunfaWEEIApKRSOaEeRW5HjbzkXU7b4eMk0tWnJJ3RFAAAAAG0UQQQAAOiwDuXs1Vevz1HQ75cjvUuz5ipy+ZRDCAHUMiVV+0PaV1qt1o0iJHtqusoOHlDOxrWtXAkAAACAoyGIAAAAHVJlUaGWznlBXpdTKZldZRhGk+cihACOrcTtV6HT26o11Gw+b2rz55/SFQEAAAC0QQQRAACgw6murNAXs5+Tq7RYKV27EUIAMba/zKNKb7BVazjcFbFvA10RAAAAQFtDEAEAADoUv8ejL2Y/r9KDB5Sa2U0WS9Nf7hwihAAabNcht3zB1utGsMXHy5SpLZ9/qnAo1Gp1AAAAADgSQQQAAOgwQsGgvpr7igr37FRyRqYsVmuT5yp2szE10BiRiKkdRW6FW3HzakdausryDiiHrggAAACgTSGIAAAAHYIZiWjV228od/N6OdLSZYuLa/JcxW6/9pYQQgCNYUryBsPaU1zVaptX2+K+64r44jO6IgAAAI4iNzdXhmFo48aNzZrn4osv1qRJk6JSEzoHgggAANDumaapdR9/oJ2rvlKiI0VxCYlNnqukyq+9JVVRrA7oXMqrAyqsbL3Nqx2pNV0RuZvWtVoNAAAAHd27776rhx9+OKpz7ty5U5dccol69OihxMREnXTSSfrrX/+qYLD+vcgMw6h92Gw2ZWVl6a677pLf768dM2fOnDrjDj9eeumlOs+fdtppR8z/1ltvyTAM9evXr8586enpUbnvY/H7/brzzjvVtWtXORwOXXXVVcrLy6v3nH79+h31Pn//+9/XjqmqqtIdd9yhE088UUlJSTrttNP07LPPxvReJMkW8ysAAADE2Pavl2nT4k8Ul5CkBLu9yfOUVQe0p5gQAmiu/eUeORJsSktqemdSU9ni4yWZ2vz5p+o/bHizlmgDAADA0WVkZER9zri4ON100006++yzlZ6erk2bNum3v/2tIpGIpk+fXu+5s2fP1uWXX65gMKhNmzbplltukcPhqBOWpKamaufOnXXOS0tLq/3a4XCouLhYq1at0o9//OPa46+88oqysrKidJcNN2nSJP373//WvHnzlJmZqbvvvlujR4/WunXrZD3Ga9w1a9YoHP7Pvm1bt27VT3/6U/3P//xP7bE//elPWrp0qebOnat+/frps88+08SJE9W7d29dffXVMbsfOiIAAEC7lrNhrb59/21ZLBYlpaQ0eZ6y6oB2HXJHsTKgc9t1yC1/KNIq17Z/1xWRs5GuCAAA0PlEIhHNmDFDAwcOVEJCgrKysvToo4/WGbNv3z5dcsklstvtOvPMM7Vq1ara58rKyjRmzBideOKJstvtGjp0qN5888065/9waaZ+/fpp+vTpGj9+vFJSUpSVlaUXXnihUXWfdNJJuuWWW3TmmWeqb9++uuqqq3TjjTdq+fLlxz03PT1dPXv2VJ8+fTR69GhdddVVWr9+fZ0xhmGoZ8+edR5JSUm1z9tsNt1www165ZVXao/l5eVp2bJluuGGGxp1L83ldDr18ssv64knntCIESN01llnae7cudqyZYuWLFlyzPO6detW5/4WLlyoAQMG6KKLLqods2rVKt188826+OKL1a9fP916660688wztXZtbPdZI4gAAADtVsGuHVo+718KB4Oyp6U3eR5CCCD6whFTOw+5FWmFDSNs8fGSaWrLF58q8r1PhAEAAHQG9957r2bMmKFp06Zp27ZteuONN9SjR486Y+677z5NnjxZGzdu1CmnnKIxY8Yo9N0eWz6fT+ecc44WLlyorVu36tZbb9XYsWO1evXqeq/7xBNPaPjw4dqwYYMmTpyo3/3ud9qxY0eT72PPnj1atGhRnTfRG2LXrl1aunSpzjvvvEZfc8KECZo/f748Ho+kmiWYLr/88iN+fg0xePBgJScnH/MxePDgY567bt06BYNBXXbZZbXHevfurSFDhmjlypUNun4gENDcuXM1fvx4GYZRe/yCCy7Qhx9+qPz8fJmmqaVLl2rXrl0aOXJko++xMViaCQAAtEtleQe17F8vyV9drdSu3eq8sGqMckIIICZMSdX+kPaXVat/V0eLX9+emq7SA/uVu2m9Tjr73Ba/PgAAQGtwu9166qmn9PTTT+vmm2+WJA0YMEAXXHBBnXGTJ0/WFVdcIUl68MEHNXjwYO3Zs0eDBg3SCSecoMmTJ9eOvfPOO7Vo0SK9/fbb9b65P2rUKE2cOFGSNHXqVM2aNUvLli3ToEGDGnUP559/vtavXy+/369bb71VDz300HHPGTNmjKxWq0KhkPx+v0aPHq177723zhin06nk5OTa75OTk1VUVFRnzLBhwzRgwAAtWLBAY8eO1Zw5czRz5kzt27evUfcgSR9//HG9+1vExR17GdOioiLFx8erS5cudY736NHjiJqP5f3331dlZaXGjRtX5/g//vEP/fa3v9WJJ54om80mi8Wil1566Yg/I9FGEAEAANodd1mpvpjznKoqypTWtXuTQ4gKDyEEEGtFLp9Skmzq6kho0et+f6+IfmeezV4RAACgU9i+fbv8fr8uvfTSesedccYZtV/36tVLklRcXKxBgwYpHA7rb3/7m+bPn6/8/Hz5/X75/X45HPV/uOT7cx5eBqm4uLjR9zB//ny53W5t2rRJ99xzj/7+979rypQp9Z4za9YsjRgxQuFwWHv27NFdd92lsWPHat68ebVjUlJS6izXZLEcfbGg8ePHa/bs2crKylJVVZVGjRqlp59+utH30bdv30afczymaTb499+XX35ZP/vZz9S7d+86x//xj3/om2++0Ycffqi+ffvqq6++0sSJE9WrVy+NGDEi6jUfRhABAADaFV9Vlb6Y/bwqCgpqOiGO8eLxeCq9Qe0scqsVVo0BOp29xdVynGhTUlzLhgE1XRG5yt28XiedRVcEAADo+L6/50F9vv9p/MNvbEciNft7PfHEE5o1a5aefPJJDR06VA6HQ5MmTVIgEGjwnIfnPTxnY/Tp00eSdPrppyscDuvWW2/V3XfffcwNmiWpZ8+eGjhwoCTp1FNPldvt1pgxY/TII4/UHrdYLLVf1+fGG2/UlClT9MADD+imm26Szda0t9AHDx6s/fv3H/P5vn37Kjs7+6jP9ezZU4FAQBUVFXW6IoqLi3X++ecf99r79+/XkiVL9O6779Y57vV69Ze//EXvvfdebUfMGWecoY0bN+rvf/87QQQAAIAkhYJBfTn3ZR3K2aOUzMwmf8LZ6Q1qR5GLEAJoIaZpameRW0NPTJO1iR1MTWGLj5dpRrTlcFeEha4IAADQsZ188slKSkrS559/rt/85jdNmmP58uW6+uqr9etf/1pSTUCxe/dunXbaadEstUFM01QwGJRpNu63t8OhhdfrbfQ1MzIydNVVV+mtt97Sc8891+jzD2vO0kznnHOO4uLitHjxYl133XWSpMLCQm3dulWPP/74ca89e/Zsde/evTZsOCwYDCoYDB7RDWK1WpsUGjUGQQQAAGgXzEhEqxa8oQNbNsqR1kVW27FftNXH6Qtqe5FbjXwdC6AZTEneYFg5pdUa2C35uOOjyZ6WrpID+3Vgyyb1O/PsFr02AABAS0tMTNTUqVM1ZcoUxcfH6yc/+YlKSkqUnZ2tCRMmNGiOgQMH6p133tHKlSvVpUsXzZw5U0VFRTEPIl5//XXFxcVp6NChSkhI0Lp163TvvffqV7/61XG7EiorK1VUVFQbmjz00EM65ZRTmlzznDlz9MwzzygzM7NJ50vNW5opLS1NEyZM0N13363MzExlZGRo8uTJGjp0aJ2uhUsvvVTXXnut7rjjjtpjkUhEs2fP1s0333zEzy01NVUXXXSR7rnnHiUlJalv37768ssv9a9//UszZ85scr0NQRABAADahQ2ffqSdK79SYnKK4hKatta8yxfSjkJ3oz9NAyA6Stx+pSXGqVtKy+0XERefIE/EqS1ffKq+Q4c1eTk3AACA9mLatGmy2Wy6//77VVBQoF69eun2229v1Pk5OTkaOXKk7Ha7br31Vl1zzTVyOp0xrFqy2WyaMWOGdu3aJdM01bdvX/3+97/Xn/70p+Oee8stt0j6z94UF154oaZPn97kZZWSkpIavMxVrMyaNUs2m03XXXedvF6vLr30Us2ZM6fOElV79+5VaWlpnfOWLFmiAwcOaPz48Uedd968ebr33nt14403qry8XH379tWjjz7aqD8jTWGYDfhN3OVyKS0tTU6nU6mpqTEtCAAA4Id2ffO1vp7/mqxWm5JSmvZaxO0PaVuBSxFCCKBVWQxDQ09Ikz2+5ZZJCvp98lVX66e//b2yhpzZYtcFAADtl8/nU05Ojvr376/ExMTWLgdoNfX9XWhMbsDHgQAAQJuWt32rVr0zTzLNJocQVYQQQJthmqZ2HnIr3IJ/H+MSEhUJh7Tli8/oiAIAAABaAUEEAABos8oL8vTV63MU9HnlSM9o0hyeQFjbCgkhgLbClOT7br+IlpSUkqaifbuVvyO7Ra8LAAAAgCACAAC0UR5npZa9+qKqK8qUktFVhmE0eg5fMKzsQpciEUIIoK0pcftV7Pa32PXiExMVCdIVAQAAALQGgggAANDmBAN+LXvtZZUePKDkzK5N2lzWH4oou8ClcDgi3nIE2qac0mp5AuEWu15SSqoKd+9U4e6dLXZNAAAAAAQRAACgjTEjEa1a8Kbyt2cruUuGrFZbo+cIhCPKLnAqSAgBtGmmaWrXIXeLLZ0Wl5iocDCorUvpigAAAABaEkEEAABoUzYtWaRdq75WYnKKbPHxjT4/GDG1rcClQIgQAmjrTEneFtwvwjAMJaakKG/HNhXn7G2RawIAgPaNDy+gs4vW3wGCCAAA0GbkblqvDYv+LVt8vBLs9kafH4qY2lbglC8YJoQA2pFit1+l1S2zX0R8YpJCAb+2LP2sRa4HAADap7i4OEmSx+Np5UqA1nX478DhvxNN1fi1DgAAAGKgLP+gVsyfq3AoqJSMro0+P2ya2l7okjdACAG0R3uLq5XcJ06Jtth+VsowDCUlp+hg9haV7M9Rt779Y3o9AADQPlmtVqWnp6u4uFiSZLfbZRhGK1cFtBzTNOXxeFRcXKz09HRZrdZmzUcQAQAAWp23yq0vX3tZ1c4KpXXr0egX+BHT1I5Ct6r8oRhVCCDWTNPU7kNuDTkhTbH+FT8+yS5v1SFtXbZEl9z82xhfDQAAtFc9e/aUpNowAuiM0tPTa/8uNAdBBAAAaFWRcFhfv/GqSg/sV0pm18aHEJJ2HaqSyxeMTYEAWoQpqcofUl6FR326NH5ptsYwDEOJjmTt37xBZfkHlXlCn5heDwAAtE+GYahXr17q3r27gkF+30DnExcX1+xOiMMIIgAAQKta9/EHyt28Xo70dFltjXtpYkraW1ylCk8gNsUBaHF5FV6lJcUrNTG2v6ok2B1ylhxS9pdLdOENt8T0WgAAoH2zWq1RezMW6KzYrBoAALSaveu+1ZYvPlN8ol1xCYmNOteUlFtardKqltngFkDL2XXIrVAktru9GIahRLtDOevXqqKoIKbXAgAAADo7gggAANAqyvIPatWCN2WGw0pKSWn0+QfLPSpy+WJQGYDWFgpHtKe4KuYbzyc4kuX3eLTtq6UxvhIAAADQuRFEAACAFuerrtJXc1+Rx1Wp5IzMRp9f4PQqv9Ibg8oAtAWmpApPQIdiHDYahqEEu117134jVwmbUAIAAACxQhABAABalBmJaNXbb6hkf65SMhq/OXWx26/9ZZ4YVQegLcktq1Z1IBzTayQmp8hXXaXty+mKAAAAAGKFIAIAALSo7C8/195138qemtbozanLqgPaW1IVo8oAtDlmzX4RYTN2izQZhqH4xCTtWr1CVRXlMbsOAAAA0JkRRAAAgBZTtHe31n38gaw2m+KTkhp1rtMb1O5D7hhVBqAtMiX5gmHlllbH9DpJySnyVrm1Y8WXMb0OAAAA0FkRRAAAgBbhdbv09ZuvKuD1yJ6W3qhzq/wh7Shyx3zjWgBtU7Hbr9Jqf8zmNywWxSUkaMeKr+RxOWN2HQAAAKCzIogAAAAxZ0YiWvn2GyovyG/0vhDeYFjbCl2KxHBpFgBt397iavlCkZjNn5SSJo+rUjtXLY/ZNQAAAIDOiiACAADEXPaXnytnw1rZ09JksVobfF4gFNG2ApciEUIIoLMzTVO7DrkVqyjCYrHIFh+v7cuXyVfNXjQAAABANBFEAACAmCrO3af1n3xYsy9EYsP3hQhFTG0rdCkYjrAkEwCZkqr9IR0s98TsGvaUNFVXlGvXNytidg0AAACgMyKIAAAAMRPwerRi/mvyVVc3al+IiGlqR6FLvmCYEAJAHQWVXlV6gzGZ22K1yhpn07avPlfAG7vAAwAAAOhsCCIAAEBMmKapbz9YoJIDuUrJyGzwvhCmpF2HquT2hwghABzV7kNuBcKxWaQpKTVN7rJS7f52VUzmBwAAADojgggAABATORvXatc3K5TkSJHVZmvQOaakfSVVqvAEYlscgHYtHDG1p7gqJmGl1WqTxWpV9pdLFPT7YnAFAAAAoPMhiAAAAFFXVV6m1e++pUgkrASHo8Hn5VV4VOz2x7AyAB2BKcnpDaqg0huT+e2p6XKVFGvv2tUxmR8AAADobAgiAABAVJmRiFYteFPuslIld8ls8HlFLp/yKmLzpiKAjulAuUduXyjq89Z0cRnaumyJQsHY7EcBAAAAdCYEEQAAIKp2rPxK+7dslD0tXRZLw15qlFUHlFNaHePKAHREuw65FYpEf5Eme1q6KosKlLNxbdTnBgAAADobgggAABA1lYeKtO6j92WxWhSfmNigc1y+kHYXu2NcGYCOKhiOxGS/CFtcnExJW79YrEg4HOXZAQAAgM6FIAIAAERFJBzWyrdfl8fllCM9o0HneAJh7ShyyYzFjrMAOgVTUoUnoCJn9DeWdqSmqyzvgPZv3hD1uQEAAIDOhCACAABERfZXXyh/xzY50rrIMIzjjveHItpW6FIkBkuqAOh89pdVq8of3f0ibPHxMs2Iti5dLDMSiercAAAAQGdCEAEAAJqtoqhAGz9dKFtcnOISEo47Phgxta3QpVA4EvXlVAB0TqaknTHYL8Kemq7i/ft0cNuWqM4LAAAAdCYEEQAAoFki4bBWLXhTXrdL9rT0444Pm6a2F7rkD4YJIQBEVTAU/f0i4hISFAmHa7oiWEcOAAAAaBKCCAAA0Czbv17W4CWZTEm7ityq9ocIIQBE3eH9Igqd3qjOm5SSqqK9u1Wwc3tU5wUAAAA6C4IIAADQZK6SYm1Y9G9ZbbbjLslkStpXUqVKb7BligPQae0v88jli95+EfGJSQoFg9qy9DO6IgAAAIAmIIgAAABNYpqmVr/3ljxOpxzp6ccdn1fhUbHbH/vCAEDSrkNuBcPR22DanpKqgl07VLR3V9TmBAAAADoLgggAANAke9as0v6tm2RPS5Nh1P+S4pDbp7yK6C6VAgD1CYUj2nUoevtFxCUmKhzwa+sX7BUBAAAANBZBBAAAaDSPy6l1C9+XoZolS+pT7gloX0l1yxQGAN8xJbl8QR0s90RlPsMwlJicqrwdW1Wcuy8qcwIAAACdBUEEAABotHUfvS9XWYkcXTLqHef2hbTrUFULVQUAR8qv9Kq8OhCVueKTkhT0+7V16eKozAcAAAB0FgQRAACgUfJ2ZGvPt6uU6EiWxXLslxLeYFjbi1wsYQKg1e0urpI3GG72PIZhKMmRogNbN6nkQG7zCwMAAAA6CYIIAADQYEG/T9++v0ChYEAJdsexx4Uj2lboUiRCCAGg9ZmmqR1FboWjEIzG2+0K+n10RQAAAACNQBABAAAabOuyJSrL26/kLhkyDOOoY8Kmqe2FbgVDkahtEgsAzWFK8gXD2hOFzasNw1CiI1n7N29QWd7BaJQHAAAAdHgEEQAAoEEqDxVpyxefyRYfL6st7qhjTEm7D1WpOhAihADQ5pR7AsqvaP7m1Ql2hwI+r7Ys/SwKVQEAAAAdH0EEAAA4LtM0teaDBfJVuWVPTT/6GEn7SqtU4YnOprAAEAsHK5q/ebVhGEq0Jyt30zqVF+RFqTIAAACg4yKIAAAAx7V/03odyN4se2raMZdkyq/wqtjlb+HKAKDxdhdXqTrQvM2rExwOBTxebV22JEpVAQAAAB0XQQQAAKhX0O/T2o/elxkJKz4x6ahjit1+HYzCcicA0BJM09SOQpcC4UiT56jZK8KhnPVrVFGYH8XqAAAAgI6HIAIAANRr21dfqKIwX470jKM+X+EJaG9JVQtXBQBNZ0oKhiPaUehW2Gz6jjYJjmT5PR5lf/l59IoDAAAAOiCCCAAAcEzustKaDarj4mW12Y583hfSzkOEEADaH1NSdSCk3Yeq1NQowjAMJdgd2rt2tSoPFUWzPAAAAKBDIYgAAADHtOHTf8vjcsqemnbEc95gWNuLXDKb8WliAGhtFZ6A9pdVN/n8xORk+b0ebV22OIpVAQAAAB0LQQQAADiqor27tXftt0p0JMuw1H3J4A9FlF3gUiRCCAGg/St0+lTk8jXpXMMwlJBkpysCAAAAqAdBBAAAOEIkEta6he8p5Pcrwe6o81woYmp7oUuhcKTJy5kAQFuTU1qt8upAk85NTE6R31PNXhEAAADAMRBEAACAI+xbt0aFe3fJnpYuwzBqj0dMUzuKXPIFw4QQADqcXcVVcvlCjT7vcFfEnjWr5CymKwIAAAD4IYIIAABQR8Dn1YZF/5YkxSUk1B43Je06VCW3L0QIAaBDMr8LW6sD4Uafe7grYusyuiIAAACAHyKIAAAAdWz7aqkqDxXKkdal9pgpaW9JlSo8TVu2BADai8h3y8/5gpFGnUdXBAAAAHBsBBEAAKBWVUW5ti5dLFtcvKw2W+3xA+Uelbj9rVgZALQMU1IoHFF2oVOBUOPCCLoiAAAAgKMjiAAAALU2Lf5EHlel7KlptccKnF4VVHpbsSoAaFmmpGAoouwClwLhhocR3++KqDxEVwQAAABwGEEEAACQJJXlHdDub1cowe6QYal5iVDs9mt/maeVKwOAlmdK8ofC2lbgUjDS8J1x/tMVsTh2xQEAAADtDEEEAACQaZra8OlCBbxeJTqSJUnlnoD2llS1cmUA0HpMSb5gWNsKnA0OIwzDUILdob1rvlFFUUFsCwQAAADaCYIIAACggl07dGDrJiWlpMowDLl8Qe065G7tsgCg1ZmSvIGwsvMbHkYkOpLl93q05YvPYlscAAAA0E4QRAAA0MlFImFt+ORDhYNBxScmqcof0vZCt8yGr0QCAB3a4c6I7Hyngg3YM8IwDCXaHdq3/luV5R+MfYEAAABAG0cQAQBAJ5e7cb2K9u2WPTVdvlBE2wtdipBCAEAdh8OIrQUu+UPHDyMSHMkKeL10RQAAAAAiiAAAoFMLBYPa+NlHkmkqYo3TtgKXwo3YlBUAOhNTkj8Y1tYCp3zB+sMIwzCU6EhW7sZ1Kj24v2UKBAAAANoogggAADqxPd+uVFneQcWnpGtboUvBcETEEABwbKakYCiirQVOVQfC9Y5NsDsU8NEVAQAAABBEAADQSQW8Hm1askiyGNpV6pU/GCaEAIAGMCWFwhFlFzjl8oWOOa6mKyJFuZvWq2R/TssVCAAAALQxBBEAAHRS21d8JWdxkfK8NlX7Q4QQANAIpqRwxNS2QqfKPYFjjkuw2xX0+7R5ySKZ7L8DAACAToogAgCATshb5dbWZYtV6onIFTj+pqsAgKMzTWlnkVtFLt9RnzcMQ0nJKTqQvVnFOXtbuDoAAACgbSCIAACgE8pe9rny8g+pNBzX2qUAQIeQU1qt3LLqo3aXxSfVdEVsWvIJXREAAADolAgiAADoZNzlZfp84SdyBiXT4KUAAERLodOnXUVuhX8QNhiGoaSUVOVtz1bRnl2tVB0AAADQenj3AQCATsQ0TT3zwpvyuJzyWpJauxwA6HDKPQFtzXfKH6q77F18YpLCgYA2LaYrAgAAAJ0PQQQAAJ3IUx98q4rsNQpY4iTDaO1yAKBD8gbC2pxXKZcvVHvMMAwlpaaqYNd25W3f2orVAQAAAC2PIAIAgE7iha/2auUnnygh7JfPktja5QBAh2VKCkVMZRc4VeTy1e4bEZ+YpHAoqI2ffqRIJNyaJQIAAAAtiiACAIBO4LVVuXr6g9UaUL1PAUs83RAA0EJySqu1t6RKke+WY7KnputQzh7lblrfypUBAAAALYcgAgCADu6ttQc17YNsDXZvU3wkIJ8lobVLAoBOpcTt19Z8l/yhiOISEiTT1MZPP1YoGGzt0gAAAIAWQRABAEAH9sHGfE1dsFnpgQr19+yXn24IAGgVnkBIm/IqVekNyp7WRWV5B7RnzarWLgsAAABoEQQRAAB0UIu2FupP8zfKlHS6e7viIkH56YYAgFZhSgpHTG0vdKmwKijDYmjzkkUK+LytXRoAAAAQcwQRAAB0QEt3Fuv3b2yQaUoZgXL18x6oCSHohgCAVpdX4dVBr1XlRYXaseKr1i4HAAAAiDmCCAAAOpiVe0t167/WKhIxZUoa7N72XTdEfGuXBgD4jjtgqsAd1MpPPpbX7WrtcgAAAICYIogAAKADWbe/QrfMXqPQdyFEZqBMfbx58lnphgCAtsSUVGUkqrDgkP7x7OsKhiOtXRIAAAAQMwQRAAB0EFvznRr78moFwxGZZs2x0101e0MEDLohAKCtMQ2LgpY4VWxZreuf+Fi5pdWtXRIAAAAQEwQRAAB0ALsPuXXDi9/IFwwr8l0IkRkoUx8f3RAA0JZ5LYlKCPuUsHe1Ln/qKy1YlyfzcJoMAAAAdBAEEQAAtHP7y6p1/QvfqDrwnxBCkk53baMbAgDaOsOQ35KgftW5clSXaPLbm/T7N9bL6Qm2dmUAAABA1BBEAADQjuVXenXd86tU6Q0q/L0UoqYbIp9uCABoB/yWeMWZQZ3p3CyZpj7dWqQRM7/Uyr2lrV0aAAAAEBUEEQAAtFOHXD5d99wqlVYF6oQQEt0QANCuGIa8liT19hXqRF++wqZUVu3XjS+u1uOLdrCRNQAAANo9gggAANqh0iq/fvX8KhW5fEeEEHRDAED7E7TEyWJGdKZzsyxmzVJ7pqRnl+3VNf+3go2sAQAA0K4RRAAA0M5UegIa88I3OljhPSKEkOiGAID2ymOzKzNYroHVe2uPmZJ2FLn1s6eWa+HmgtYrDgAAAGgGgggAANoRty+oG19arX2l1UcNIeiGAID2K2xYFZFFQ13ZSgz7/nM8YsoXDOuONzbovve2yBcMt2KVAAAAQOMRRAAA0E54AiHd/Mq32lHoOmoIIdENAQDtnceapORQlU53b6tz/PD/67/x7QFd838rtL+MpZoAAADQfhBEAADQDviCYf3m1bXaeLBS4aNnEOrqL6UbAgDaOdOwKGCJ0ylVe5QWrDzyeVPaXVylnz21XIu2FrZ8gQAAAEATEEQAANDGBcMR/W7uOn2zr0zHaISQJJ3m3k43BAB0AD5LohIifg1zbqpJHn4gHDHlDYR1+9z1euSjbQqFI61QJQAAANBwBBEAALRh4YipSfM2atnOknpDCPaGAIAOxDDktSaqjzdfJ/ryjzrk8D8JLy/P0fUvfKNit++o4wAAAIC2gCACAIA2yjRN3fvuFn28pVD1ZBCS2BsCADqaoCVeFjOiYc5NskZCxxxnStpwsFI/e3K51h+oaLkCAQAAgEYgiAAAoA0yTVPTP96ut9YePG4IQTcEAHRM1Ta7MoMVOqV6d73jwhFTFZ6Arntuld5ae7CFqgMAAAAajiACAIA26Jlle/Xi8pwGjT3dxd4QANARRQyrQrJqiGubHKHq+seaUihiasqCzXro39kK17eeHwAAANDCCCIAAGhj/rUqV//76c4Gjc0IlKmPL49uCADooDzWJNnDHp3h2tzgc15Zkavxc9aoyn/sJZ0AAACAlkQQAQBAG/Lu+jzd/0F2g8ef7t5BNwQAdGSGIZ81QSd5ctXDV9Tg05bvLtE1/7dCBZXeGBYHAAAANAxBBAAAbcRn2UWa/PamBo/PCJQry3uQbggA6OACRrysZlhnOzfKYoYbdE7ElHJKq3XV019rZ5E7xhUCAAAA9SOIAACgDVi9r0wTX18vsxFLeg+iGwIAOgfDkMeapG6BUp1StafBp4UjpiqqA7r2mRX6Zl9ZDAsEAAAA6kcQAQBAK8sucOqWOWsUMU01NIfoEqhQP+8B+S10QwBAZxA2bIrIoqGurcfduLrOeabkC4b165dW69Pshi/tBAAAAEQTQQQAAK3oQJlHv35ptXzBsCKN6IY4raqmG8JvoRsCADqLaqtd9rBHZzo3qTEtdBGzpjvi9rnrtGBdXgwrBAAAAI6OIAIAgFZSWuXXDS99I5cv1KgQIi1YqX6e/XRDAEBn893G1f29+9XbX9ioU03VZBeT396kV77OiU19AAAAwDEQRAAA0Aqq/SHd9Mq3KnT6FG5MCiHpdDfdEADQWQWMeFkjYZ1duUG2SLBJczy0cJue+3JvlCsDAAAAjo0gAgCAFhYMR3T73HXaUehqdAiRFnR+1w0RTzcEAHRGhqFqm12ZgQqd7t7e5Gn+9skOPf3F7igWBgAAABwbQQQAAC3INE1Ne3+rvt5d2qjlmA4b5N6h+EigZlkmAECnFDGsClpsOt29Q10CFU2e5++f7dJTS3ZFsTIAAADg6AgiAABoQc99uU/z1hxUEzIIpQZdOsmTqwDdEADQ6XktiUqI+DW8cp0MM9LkeWYt2a1/fE5nBAAAAGKLIAIAgBby0eZCzVi0o8nnn/ZdN4SPbggAgGHIY7Wrl79Ip1TvadZUMxfvYpkmAAAAxBRBBAAALWDd/nL9cd6GJp9f0w2RQzcEAKBWyGJTRBad6dys5JC7WXP9/bNdbGANAACAmCGIAAAgxnJKq3XL7DWKmE1ZkKnGoCq6IQAAR6q22pUU9mp45XqpGf/OSDUbWL++en+UKgMAAAD+gyACAIAYKq8OaOzLq1UdCDdpc2qpphtiQDXdEACAozAMea1J6uPN0wDPvmZP99f3tuqDjflRKAwAAAD4D4IIAABixB8K6zevrlFhpU/hpqYQohsCAFC/oCVOpqSznJvkCFU1ay5T0p/mb9QXOw5FpTYAAABAIogAACAmTNPU1AWbteFgpcLNWCojJejWSdW5dEMAAOpVbXUoOVQdlSWaTFO6/bX1Wre/PErVAQAAoLMjiAAAIAb+b+kevb+xoLnvBWlQ1U4lRPx0QwAA6mcY8liTlOU92OwlmkxJoUhEN73yrXYWNW8TbAAAAEAiiAAAIOo+2VKov3+2q9nzJIfcGlC9TwFLHN0QAIDjqlmiydDZzo1KbuYSTRFT8gXCuuHFb5Rf6Y1ShQAAAOisCCIAAIiirflOTZq/UdGIDU5zH+6GSIzCbACAzqDaapc95NGPKtbIMCPNmitsSpXeoH790mo5PcEoVQgAAIDOiCACAIAoKXb7NH7OGoXCppq5IpNSgnRDAACa4Lslmk705euUqt3Nni4cMXWgzKNb5nwrXzAchQIBAADQGRFEAAAQBf5QWL99da3KqgPN2pz6sNOqdtANAQBokpAlTmFZNcy1WV0CFc2eL2ya2niwUne9tVGRSPP/jQMAAEDnQxABAEAzmaapv7y7RZvznQpH4Q2a1KBLJ1XnKGCJpxsCANAkHmuSEsM+nVfxrayRULPni5jSx1uK9PfPdkahOgAAAHQ2BBEAADTTKyty9c76fEWhEUKSdJr7cDdEQnQmBAB0PoahaptDPfwlGuraGrVpn1m2V2+tORi1+QAAANA5EEQAANAMy3eX6JGPtkVtvtSgUyd56IYAADRf2LAqYInT6VU71MtXGLV5//zuZq3cUxq1+QAAANDxEUQAANBEB8o8+t3c9VGd83T3dsVHAnRDAACiwmdJkC0S0nkVa5QY9kVlTlPSra+tU25pdVTmAwAAQMdHEAEAQBN4AiFNeHWNvMFw1JZkSg9Wqr9nv/x0QwAAosUwVGVzKC3o1LkVaxWNf7RMU/IGwxo3+1u5fMEoFAkAAICOjiACAIBGMk1T9yzYrL0lVVHZnPqww90QfrohAABRZBoWea2J6ufdr1Ord0dlznDE1IFyj+54fX1U/y0EAABAx0QQAQBAI738dY4+2lyoaL7v0iVQrn6e/TUhBN0QAIAoC1riFZFFZ1VuVGagLCpzRkzpq92lenzRjqjMBwAAgI6LIAIAgEb4Nqdc0z/eHvV5h7i3KS4SrFmWCQCAGPBYk5QQ8ev88m8UH/ZHbd7nv9qnDzbmR20+AAAAdDwEEQAANFCx26fb566L+rxd/aXq482Tz0o3BAAghr7bLyIjUK4fVUZnv4jD7nl7s7bmO6M2HwAAADoWgggAABogFI5o4tz1cnqDUV2SSaapwd91QwQMuiEAALEVMazyWhPV35OrQVW7ojZvKBLR+DlrVFYVvU4LAAAAdBwEEQAANMD/frpT6/ZXRH1Dzu6BEp3oy5fPmkg3BACgRQQt8YoYFg1zblJ3f3FU5oyYUllVQBNfX69QOBKVOQEAANBxEEQAAHAcn2UX6fmv9im6EYQk09RQ11bZIiEFjLhozw4AwDF5LEmKNwP6cfk3Sgp7ojJn2DT1bU65/sbm1QAAAPgBgggAAOqxv6xak+ZvVCx6FXr7C9XLVySvNYluCABAyzIMVVkdSg869ePy1bKY4ahMa0p6aXmOPtxUEJX5AAAA0DEQRAAAcAy+YFi3vbZO/lAkRt0Q2bIooqCFbggAQMszDYs81iT18eXrDOeWqM59z9ubtOuQO6pzAgAAoP0iiAAA4Bge/He2dh5yR31fCEnq481Td3+xvJbEqM8NAEBDhSxxChhxGly1Xf08udGbN2zqN6+uldsXjNqcAAAAaL8IIgAAOIoPNubrzW8Pyox+BiGLGdYZrq0yTFMhuiEAAK3MZ02UxYzoRxVrlREoj8qcYdNUXoVHk9/eJDMW/5gCAACgXSGIAADgB/aWVGnqO5tjNn9/z35lBsvksSXF7BoAADRGldWhpLBXPylfqcSwNypzRkzp0+xDevnrnKjMBwAAgPaLIAIAgO/xBcO6/bV1CoZj8+lNWySoIa5smZLChi0m1wAAoNEMQ25bsjICFfpJ+aqobV4tSdM/3q41udHptAAAAED7RBABAMD3PLJwm/aUVMVkXwhJGli9T+khpzxWe0zmBwCgqWo2r7brRG++zqncoGiuT3j7a+tUWuWP2nwAAABoXwgiAAD4zqKthZq7+kBM9oWQpPiwX4Pd2xSWRRHDGpuLAADQDCGLTX5LggZV7dLJ1XuiMmfElCq9Qd3xxvqYBf0AAABo2wgiAACQlFfh0d1vb5IRw2sMqtqp5FCVPFb2hgAAtF1+a4Iiks6p3KAevkNRmTMcMfXNvnI9uWRXVOYDAABA+0IQAQDo9ILhiH7/+nr5ghHF6nOajlC1TqvaqaDFJtPgn18AQNvmsdoVHwnoJ+WrlBJ0RW3ep7/Yoy93lURtPgAAALQPvBMCAOj0nvhspzbnOWO6XMRg9zYlhn3yWuiGAAC0A4ahKptDKSG3/l/5CsWHo7S/gyHd+cZ6FTq90ZkPAAAA7QJBBACgU/tyV4me+3JfzDohJKlLoFwDqvcpYImXjFgu/gQAQPSYhkVVNoe6+Ut1fsU3spjh5s9pStWBsH43d72C4UgUqgQAAEB7QBABAOi0il0+/eHNDbHNBkxTZ7q2KD4SkM+SEMMLAQAQfRHDKo81SX29B3RO5fqaJKGZwhFTmw5WasaiHVGoEAAAAO0BQQQAoFOKREz9Yd4GVflD0XhP5Zh6+wt1oi9fXmsi3RAAgHYpZImTz5KgQVW7dJo7OuGBKeml5Tn6NLsoKvMBAACgbSOIAAB0Ss9/tU/f7CuP6b4QhhnRmc4tspgRBS3xMbsOAACxFrAkKGxYdZZrk/p69kdlTkPSn+Zv1IEyT1TmAwAAQNtFEAEA6HQ2HqzU/34a++UgBnhy1C1QIg8bVAMAOgCvJVFWM6z/qvhWPfyHmj2fKckfiui219bKF2z+/hMAAABouwgiAACditsX1MTX18X8OnGRgIa6tsqUobDFFvPrAQAQc4ahKqtDCWG/LihbqfRgZbOnDEdM7Tzk1iMLtzW/PgAAALRZBBEAgE7lvve2qsjpUwxXZJIknebeodSgS9VWe2wvBABASzIMuW3JSg5V6cLSr2UPVTd7yogpzV19QP/eVBCFAgEAANAWEUQAADqNd9fn6cNNBTEPIVKCbp1WtVNBS5xMg39qAQAdzHdhRJdghS4sW6G4SKD5U0qasmCz9pVUNb8+AAAAtDm8OwIA6BRyS6v1l/e2xP5Cpqlhrk1KDPvktSTG/noAALQC07CoyuZQD/8h/aR8lSxm8/Z4MCUFwhHdPncd+0UAAAB0QAQRAIAOLxiO6PdvrFcwHONWCEm9/EXK8h6Uz5ooGUbMrwcAQGuJGFZ5rEnq6zmg8yq+lWFGmjVfOGJqT3GVHvwwO0oVAgAAoK0giAAAdHizFu/StgKXwjFek8lihnWWc6NskZACRlxMrwUAQFsQssTJZ03UydV7Ncy5WTKb929txJTeXHNQH2zMj1KFAAAAaAsIIgAAHdrqfWV6dtlexb4XQjq5ao+6BspUbbPTDQEA6DQClngFjDgNcW/Tae4dUZlzyoLN2st+EQAAAB0GQQQAoMNyeoK6880NLZIJJIU9GurOVkQWhQ1b7C8IAEAb4rcmKmwYOtu1USdV5zR7vlDE1G2vrZM3wH4RAAAAHQFBBACgQzJNU395b4vKqvyK8YpMkqQznFvlCFXLY02K/cUAAGiDvJYkGaap8yq+1YnevGbNFY6Y2ldSpfs/2Bql6gAAANCaCCIAAB3SO+vz9dGWQrXA/tTq5i/RAM8++S3xMg3+aQUAdFKGoWqrXTYzqJ+Ur1IPX1GzpouY0tvr8vT22oNRKhAAAACthXdLAAAdTm5ptf76/pYWuZbFDOucyvWKiwTltyS0yDUBAGizDENV1mQlhP36f+UrlBkoa/aU9723VTuKXFEoDgAAAK2FIAIA0KEEwxHd+eYGBVuiFULSKVW71T1QomorG1QDACBJMgy5bclyhDy6qHS50oLOZk0XNk3d+q91qvKHolQgAAAAWhpBBACgQ3lqyW5tzXcq3AIbQzhCVTrDtVVhWRS2sEE1AAC1vgsjUkJuXVz6lRyhqiZPFY6YyqvwaOo7m2WaLfNBAwAAAEQXQQQAoMP4Nqdc/7d0j1rkLQrT1NmVG5QU9spjtbfEFQEAaFdMwyL3/9/efcfJddf3/n9/zzlTtqp3y7JlydiWOy64ChuTRkJCch+QdgMJBJJ7U25IJT03ye/m8UsIuSEQWgw2NSY2hEAgFNuSLKtLtiRLsnpbld2dLdNnTvneP2Z2tXLB2t1pu/t6Ph7zmNnZPd/vFyFr55z3+Xw/Xqdm+0N6Y/8GtYX5CY8VWekbu8/qc5tP1HCFAAAAaBSCCADAtDBc8PXrX9jZsN2RLi+c0orCKRXcJFsyAQDwKqxxlPU6NL/cr7X9zygeliY13p//xz49d2qoNosDAABAwxBEAACmPGut/vCJPerLltSAHZkUD0u6dfg5GUXynXj9JwQAYAqLjKuc16FFpfO6f+AZeZE/4bGstXrvo9s1kCvXcIUAAACoN4IIAMCU9/jOHn1jz9mGhBCSdFN6j2b5w8q5HY2ZEACAKS40rnJuu5YVzuiegU1ybDihcSIrpXJl/c/P72xIPygAAADUBkEEAGBKO96f0x9/dU/D5ltcPKfVucMqOXFZw69RAAAuVeh4yrttuiJ/Qm8Y2CJjo4mNE1ltOprS33/nxRqvEAAAAPXCFRQAwJTlh5F+7Qs75YeNuSMyFvm6fWiHvChQyUk0ZE4AAKaTwImp4Ca1On9Utw/tkOzEf4d/5Kkj+u6+8zVcHQAAAOqFIAIAMGX9w3cP6oUz6YZtzXB9eq/mlgeU89ppUA0AwAT5TlxFJ65rsi/qluHnJxxGGEm/8aVdOpHK1XaBAAAAqDmCCADAlLT5aEoffeqIGrU79KLieV2bfVFlJ67IuA2aFQCA6ansJFQ2MV2feUFrMvsmNIaVVAoi/fKj21UoT6znBAAAABqDIAIAMOUM5cv69S/salhRQiwq646h7YpFvopsyQQAQE2U3KRC4+qW9G6tzh6a0BhhZHW4N6sPPLFbdhLbPAEAAKC+CCIAAFOKtVa/92+7NZArq0E7Munm4d2aWx5Q1utgSyYAAGqo4LbJWun2oR26In98QmNEVvrqc2f02c0nars4AAAA1AxBBABgSvnXbaf07X3nFTborsdlhR5dnTukkpNgSyYAAOog77bJtaHeMLBVywo9Ex7nz7/2grYfH6jhygAAAFArBBEAgCnjcG9Gf/rvLzRsvrYwrzuGtsu1oUpOvGHzAgAwoxijrNuhmC3rnoFNWljqnfBQ7310h86nizVcHAAAAGqBIAIAMCUU/VD/4/M7G1YJIWt12+AOdftpZV22ZAIAoK6MUdbtVDIs6v7UM5pbHn9lQ2Sl4aKv9z66XaWA5tUAAACthCACADAl/M1/HtCh3qzCBjWGWJ07rCsKJyt7Vxt+XQIAUHfGKON1qiPIaW3/enX7w+MeIoysdvcM68+/1rgKSgAAALw2rqwAAFre9/af12c2HVejiiHmlAd06/BzsjLynVhjJgUAAKNhRHeY0Rv7N6gjyI57CGulL249pS9uPVmHBQIAAGAiCCIAAC2tN13Ub/3rc2rUxkixyNddg1uUDIvKue0NmhUAAIywxlHG7dQcf1BrUxuUDCfW8+GPv7pXO04M1nh1AAAAmAiCCABAy4oiq9/80nPKlUM1pBjCWt06tFMLSv3KevSFAACgWaxxlPU6tKDUr/tTzygWlcc/hrX65Ue269wwzasBAACajSACANCyPrHhqDYdTTWsL8RV+WNanTuioptQZNyGzAkAAF5ZZFzlvHYtKZ7VfamN8iJ/fMdXm1e/55FtKvo0rwYAAGgmgggAQEt67tSQ/v9vHWjYfHPKg3r90E5JUtlJNGxeAADw6kLjKe+2a3nhtO4a2CzHji9QCCOrfWfT+sATe2Qb1WwKAAAAL0MQAQBoOemir1/93I6GzRePSrp7YLPawgJ9IQAAaDGB46ngtmll4bjuGNwuY6NxHR9Z6Su7evTJDUfrtEIAAAC8FoIIAEBLsdbq9/9tt86ni2rIjkzW6o7B7Zpfpi8EAACtyndiKjpJXZ07pJuHn5cmUN3wf/7zgJ48cL4OqwMAAMBrIYgAALSUL249pW/uPdeYEELSmsw+rcwfU8Ftoy8EAAAtrOzEVTYxXZ/Zp+sy+yc0xv/8/C69eC5T45UBAADgtRBEAABaxoFzaf3Z1/Y2bL5lhR7dlN6jwHjynVjD5gUAABNTcpMKjatb0s/rqtyRcR1rJZXDSO98eKv6s6X6LBAAAACviCACANAS8uVAv/LZHYrGt+3zhM32h3TX4Ba5NlDBSTZmUgAAMGkFt02murXiZYXT4zo2jKz6siW9+zPbVPTH1/gaAAAAE0cQAQBoCX/y1b06OZBXOIE9n8crERZ1b+pZdQQ5Zd1O+kIAADDF5Nx2edbXPQObtKg4vr4PYWS1p2dYv/vl52Ub8LkDAAAABBEAgBbw+I7TenxnT0P6Qjg21D0DmzSvnKI5NQAAU5UxyrqdSoQl3TewUXPLA+M6PLLSf+w+qw9952CdFggAAICxCCIAAE118HxGf/iVPY2ZzFq9fminlhd6lHfbaU4NAMBUZowyXqc6gpzWpjao20+Pe4h/fPKwvrJrfNs7AQAAYPwIIgAATZMrBXrvo9sVNKIUQtK1mQO6JntQRTeuwPEaMicAAKijahjR7ae1NrVB7UFu3EP87pd3a+ux8VVUAAAAYHwIIgAATWGt1Qee2FPpC9GAIGJF/oRuST+v0DgqO4m6zwcAABrDGkcZr1NzywNam9qgRFga1/GRtXr3Z7bpSF+2TisEAAAAQQQAoCm+sPWkvvb8mYb0hVhY6tUbBrfKtaEKTlv9JwQAAA1ljaOs16GFpT7dN/CMvMi/5GMjK+X9UD//qS3qy4wvxAAAAMClIYgAADTc3p5h/dm/v9CQueaUB3VfaqMSYUlZl+bUAABMV5FxlXPbtaxwRncNbJZjw0s+NoysejMl/cLDW5QrBXVcJQAAwMxEEAEAaKjhgq9ffnS7bAMqITqDrO5PPaPOIKuM10kIAQDANBc6ngpum1YWTui2oR0azweOMLJ68VxGv/q5HfLDqI6rBAAAmHkIIgAADWOt1W8/9pzOp4sK65xEtIV5re1fr9n+ECEEAAAziO/EVHTiuiZ7SDem94wrjIistOFQv/7g8d2yjbhrAgAAYIYgiAAANMwn1h/Vd/f31r0vRDIs6o3967WgnFLW65A1/LoDAGAmKTsJ+cbTjem9Wp07PK5jraTHd/bob//rxfosDgAAYAbiygwAoCGePdyvv/nWgbrPEw9LWpvaoIWlPmW8DkXGrfucAACg9RTdpKyMbh/aocvzJ8d9/EefPqJPbzxWh5UBAADMPAQRAIC6Oztc0K9+fqfqvTlSPKqEEIuL55QjhAAAYMbLu21ybai7BrdoUfHcuI//i//Yp6/u6qnDygAAAGYWgggAQF2VglDv++wOZUtBXbdkikVl3Z96RkuLZ5Xz2hUSQgAAAGOUdTuUCEu6b+BZzSkPjnuI9z/2nJ48cL4OiwMAAJg5CCIAAHX1F1/bpz09wwrrmELEo5LW9m/QssIZ5dx2hcar21wAAGCKMUYZr1MdQU5rUxvUEWTHdbi10vs+u0NbjqbqtEAAAIDpjyACAFA3j20/pS9sPSlbx0qIeFgNIYrVEMIhhAAAAC9RDSNm+8Nam9qgRFi85EOtpDCyetent2n36aG6LREAAGA6I4gAANTFntPD+sMn9tR1jmRY1AOp9Re2YyKEAAAAr8IaRxmvQwtK/bpvYKO8yL/kYyNb2W7y5z+1RYfOZ+q4SgAAgOmJIAIAUHP92ZLe/cg2RXUshWgL83qgf91oY2q2YwIAAK8lMq5ybruWFc7oroEtMja69GOtlCuF+ulPbNbx/lwdVwkAADD9EEQAAGrKDyP9yud2KJUr1605dUeQ1YN9T2thqVdZr4PG1AAA4JKFjqeC26aVheO6bWinxrOHZGithvK+3vGJTeoZKtRxlQAAANMLQQQAoKb+6uv7tOP4YN2aU8/yh/RQ31OaX04p63UoIoQAAADj5DsxFZ24rsm+qOvTL4zr2NBa9WfLesfHN6k3fem9JgAAAGYygggAQM18efspPbLphOq1IdP8Ur/e1Pe0ZvtDynidhBAAAGDCyk5CgXF1U2aPVuWOjOvYMLI6O1zUOz6xWX2ZUp1WCAAAMH0QRAAAamLHiQF9oI7NqZcWz+iB/nXqDLPKeJ2yhl9hAABgcopum4y1un1wu5YVesZ1bBhZnRzI6x2f2KT+LGEEAADA98NVHADApPUMFfTuR7bXrTn1lbljur//GbVFBWVcQggAAFA7ObddnvV1z8AmzS/1jevYMLI6kcrrHR/fpBRhBAAAwKviSg4AYFLy5UC/9JltyhSD2jentlbXpvfr7sHN8qyvjNspGVPjSQAAwIxmjLJup5JRUfenNqrbT4/r8DCyOp7K6x2f2EwYAQAA8CoIIgAAExZFVr/5ped06Hym5s2pjY106/Au3Ta8U1ZSzu0ghAAAAPVhjLJuh7qCjNamNqgtzI/r8DCyOtaf09s/zjZNAAAAr4QgAgAwYX/7Xwf0nX3na14JEYt83ZvaqBsy++SbmApuOyEEAACoK2scZbxOzS0P6P7URsWi8riOH6mMePvHNqk3U6zTKgEAAKYmgggAwIR8efsp/fO6ozUfty3M64H+p7Uyf1wFJ6mSm6j5HAAAAK/EGkc5r0OLi+d098BmOTYc1/FhZHViIK//9s+bdHa4UKdVAgAATD0EEQCAcdt8NKU/eGJPzced7Q/pob4ntbR4TjmvXb4Tq/kcAAAA309oXOXdNq3In9Ttg9slO77SzzCy6hkq6Cc/+qxODYxviycAAIDpiiACADAuR/uyes8j22XHeVL+WpYWzuihvic1tzyotNep0Hg1HR8AAOBSBU5MJTeh1+UO6Zbh5ycURvRmSnrbRzfqcG+2TqsEAACYOggiAACXbDBX1jsf3qqCH9auL4S1ujp7UGtTG9Qe5pX2umQNv54AAEBzlZ24yiam6zP7dG3mwLiPDyOrwbyvn/zoRu3tGa7DCgEAAKYOrvQAAC5J0Q/1nke368xwUWGNUgjHhrptaIfuHNwux0bKuJ00pQYAAC2j5CYVGke3pp/Tytz4e2OFkVW2FOjtH9+kbccH6rBCAACAqYEgAgDwmqLI6v2PPaddJwdrFkLEw5LuTz2jNdkD8o2nvNdOCAEAAFpOwUnKWKs7B7dpWaFn3MdHtnJDx89+crOePHC+DisEAABofQQRAIDX9H++uV//uedczbZj6vbTenPf97Qif1J5J6mSm6jNwAAAALVmjHJuuzzr656BTVpY6h33EJGVgtDqPY9s1+M7TtdhkQAAAK2NIAIA8H19ZuMxfXLDsZqNt7h4Tm/u+57ml1PKeh0KnFjNxgYAAKgLY5R1O5UMi7ovtVFzyoPjHsKqEkj89pef18fWHZEdZwNsAACAqYwgAgDwqr6x+6z+4j/21WYwa7U6e0hv7F+vjiCntNelyLi1GRsAAKDejFHG61RnkNXa1AZ1+ZkJD/U33zygP/nq3ppteQkAANDqCCIAAK9o05GUfvNLu1SL02PHhrp1eJfuHNwm1wbKeDSlBgAAU1A1jJjlD2ttaoPawvyEh/r8lpN6z6PblC8HNVwgAABAayKIAAC8zAtnhvXuR7YpqsGWAfGwpPtSz+iGzD4FxlXe6yCEAAAAU5Y1jrJep+aVU1rb/4ziUWli40ha92Kffuqfn9X5dLG2iwQAAGgxBBEAgIsc7cvq5z61RUU/nHRz6m4/rYf6n9SVo02pk7VZJAAAQBNFxlHO69Ci0nndm3pWXuRPbBwrHTyf1Y9++BntP5uu8SoBAABaB0EEAGDUmaGCfvoTm5UpBpMOIRZVm1IvKPUrQ1NqAAAwzYTGVc5t1/LCad0zsEmODSc2TmQ1kC3pbR/dqCcPnK/xKgEAAFoDQQQAQJLUny3pZz6xWalcedKNE6/KHdUDNKUGAADTXOh4yrttuiJ/Qm8Y3Cpjo4mNY6WSH+ndn9muT204KluD7TEBAABaCUEEAEDDBV8/98nNOj1UmFQIYWykG4d3667BLfJoSg0AAGaAwImp4Ca1KndEtw9tlyYYItjq46++sV8feGKPysHEQg0AAIBWRBABADNcvhzonQ9v1eHe3KRCCC/yddfAZt2c3q1QlX2TCSEAAMBM4DtxlZy4rske1K3DuyYcRoz4122n9LOf3KxUdmKNsAEAAFoNQQQAzGBFP9QvfWabdp8eUjiJE+ZkWNAD/eu0OndERSehIk2pAQDADFN2EiqbuNZk9uum4d2TCiOspF0nh/QWmlgDAIBpgiACAGaooh/qPY9s19ZjA5NqTD3LH9Kb+57U0uJZ5dx2+U68dosEAACYQkpuQoHxdGNmr9Zk9k0qjAitVV+6qB//p4369+d6arhKAACAxiOIAIAZqBxE+pXP7dCzR/onFUIsKp7XQ31PaW55QBmvU6Hj1W6RAAAAU1DRTSo0rm4Zfl7XZg5MaqzQSuUw0m9+6Tn9+ddekB/SNwIAAExNBBEAMMOUg0i/+vkdWnewb1IhxBX5E3pjar06gpzSXpes4VcKAACAJBXcNkXG0a3p5/S67MGajPnIs8f19o9t0vl0sSbjAQAANBJXjQBgBikFod732e166kDvxHcKsFbXpvfr7oFNikdlZbxOmlIDAAC8RMFtkyTdNrRDq7OHJz2elbS7Z1g/+A/rtelIatLjAQAANBJBBADMEJUQYoeenkQlhLGRbhvaqduGd0qyyrodhBAAAACvIu+2S9bq9qHtuip3dNLjhZFVuuDrZz+5WR/+3iGFkylvBQAAaCCCCACYAUYaU6872DfhSggv8nXvwLO6Lrtfvomp4LYTQgAAALyGvNsux0a6c3Crrswdm/R4ka1UR3zwOwf1c5/arN4MWzUBAIDWRxABANNcvhzoXZ/eqo2H+yccQiTCkt6YWq+VuWMqOkmV3ERtFwkAADBdGaNcNYy4a3BLTcKIEduOD+oH/n69nn6xt2ZjAgAA1ANBBABMY5mir//+L1u19djAhLdj6ghyerD/KS0rnFHObZfvxGq7SAAAgOnuJWHEyhqFEWFkNVz09a5Pb9Nffn2fSkFYk3EBAABqjSACAKapVLakt39sk3adHJxwCDHLH9JDfU9qYalPWa9DoePVdpEAAAAzxZgw4g2DW3RV7khNhh2peH34mWN664ef0eHeTE3GBQAAqCWCCACYhs4OF/RT//ysDvZmJxxCzC/16U19T2u2P6SM16nIuLVdJAAAwEwzJoy4c3CbVmUP12xoK+lwX04//H836NFNx2UnuicnAABAHRBEAMA0c6Qvq5/4yEadGiwonGAKsazQowf716kryCjtdckafl0AAADURDWMMDbSnUPbdHX2YM2GDiMrP7T6039/QT//qS06M1So2dgAAACTwZUlAJhGdp8e0ts+slH9mfKEQ4grc8d0f2qjElFRaa9LMqbGqwQAAJjhjFHebZck3T60Q9dkDlzYY6lGNh8b0EN/v07/tuM01REAAKDpCCIAYJp45lC/3v7xTcqWAoUTOdm0VtdkDujuwc1ybaCs20kIAQAAUC/VMMJKum1op9Zk9tU0jAgjq3w51O98+Xm9+5Ht6s0UazY2AADAeBFEAMA08MTO0/qFh7eoFEQT6wlhrW5M79FtQztlJeXcdkIIAACABii47YqMo1uHn9dN6d01r4yQpHUH+/TQB9fpP54/Q3UEAABoCoIIAJjCrLX6yFOH9f7HnldkJ3beamyk24d26Ob0HoXGVYEQAgAAoKEKbpsC4+rG9F69fmiXjI1qOn4YWWWKgX79i7v0vs/uUF+mVNPxAQAAXgtBBABMUUEY6Q+f2KO//a8XJzyGY0PdNbhF12YPqGxiKrrJGq4QAAAAl6roJuWbmNZk9+mOwW1ybFjT8UfuV/negV49+MGn9ZVd9I4AAACNQxABAFNQthToFz+zTV/admrCY3iRr/tSG7U6e1hFJ6GSm6jhCgEAADBeJTehkpPQNblDuntgs9woqPkcYWSVLQb6rX99Xu98eKtOD+ZrPgcAAMBLEUQAwBTTM1TQT350ozYe7tdE72GLRyWtTW3QFfkTyrtt8p14TdcIAACAiSk7cRWcpK7KHdXa1AbFo9pvozTyGXLjkZTe9MF1+pdnjimcUKMxAACAS0MQAQBTyI4Tg/rRf9ygI325iTWllpQMC3qgf70uK/Qo57YrcGK1XSQAAAAmxXdiyrvtWl44rQf71qktrE/VQhhZlYJIf/n1ffqxD2/Q3p7huswDAABAEAEAU8QTO0/rHR/fpOGCP+E71jqCnB7sf1qLi+eU8zoUOl6NVwkAAIBaCBxPWa9Di0vn9VDfU+r203Wd78VzWf3YPz2jv/z6PuVKtd8SCgAAzGwEEQDQ4oIw0l99Y5/e/9jzCiI74UqILj+tB/uf1oJSv7Jeh0Lj1nahAAAAqKnIuEp7nZpbHtBDfU9qQamvbnOF1spa6dMbj+lNH3xaTx3ordtcAABg5iGIAIAWNpQv650Pb9W/bDg2qXFm+0N6U//TmlseUMbrVEQIAQAAMCVY4yjjdaoryOjB/qd1ef5kXeeLrHQ+U9Ivfmab3vfZ7To7XKjrfAAAYGYgiACAFrW3Z1g//H83aPPRgQk3pZakeeWUHux7WrP8YWW8TlnDP/0AAABTiTWO0l6X4lFZ9w48q2syByRbv+bSI0N/d3+vHvi7p/XJ9Uflh1Hd5gMAANMfV6MAoAU9tu2UfuKjG9WbLimcxEnmwlKvHuhfp64gQwgBAAAwlRmjrNshI6vbh3bq1uFdMra+4UAYWRX9SH/9n/v1g/+wXpuPpuo6HwAAmL64IgUALaRQDvU7X35ev/f4bgWhnVQIsaR4Vm/sX6/2IK+010UIAQAAMNUZo7zbLt+4uj6zT/emNioWlRsy9fH+nH76E5v1G1/cqfPpYkPmBAAA04fX7AUAACoO92b1vs9u17H+3KTHuqxwWvcMbFIiKinjdUrG1GCFAAAAaAUlN6kocrUyf1wdYUEb5t2jnNdR1zmj6v0x39hzTt/ed17vf/PVetfdVyrucbMLAAB4bXxiAIAW8PiO03rLP27Q8VR+9CRvoq7IH9d9qWcVj0rKuIQQAAAA05HvxJTzOrSodF5v7vue5pf6GzLvyHZN/99/HtCb/36d1h/sa8i8AABgaiOIAIAmypUC/a8v7dJvf/l5lYJI4SRTiFW5I7p7YLM86ytLCAEAADCthcZVxuvULH9Yb+p/SlfkTzR0/lODef3Cw1v1y49u1+nBfEPnBgAAUwtBBAA0ye7TQ/qhf1ivrz1/ZvKDWatr0/t15+BWGRsp63YQQgAAAMwA1jhKe12KR2XdM/CsbhzeXfcm1iNG7qF58kCvHvy7dfqnJw+pFIQNmRsAAEwtBBEA0GBhZPXRpw/rJz6yUWeGipPeiknW6ob0Xr1+eJespLxHCAEAADCjGKOs16lIRjend+ve1EbFo1LDpg8jq3IY6YPfPqgH/26dvv3COVk72Q+5AABgOqFZNQA00KmBvH7rsee0/fhg9Z3JnaAZG+mW4ee0JrNfgXFVdNsmv0gAAABMSUW3TWHka2X+uLqDrJ6Zd7eGY7MaNr+VdGa4oPd+dofuvmqe/vePr9GqhV0Nmx8AALQuKiIAoAGstXps+yn9wIfWa9fJoZqM6dhQdwxu0/WZffJNjBACAAAA8p2Ysl6H5pf79ea+7+ry/MmGzj9SCLHl2IB+4EPr9Zdf36dM0W/oGgAAQOsx9hLqJdPptGbNmqXh4WF1d3c3Yl0AMG2cGy7q9x/frXUH+2o2phsFumtwi67KH1PRSajsxGs2NgAAAKYBa9UZZhUZVy90Xqvds25QZNyGL8Mx0qy2mP74Ldfpbbcsk+OwhSgAANPFeHIDgggAqBNrrf5tx2n92ddeUCmIFE66GURFLPJ1z8CzWlE4qYLTJt+J1WRcAAAATDPWKhmVFLe+TieXatOcOyv9xBrMqLJt002XzdJfv+0GXb+scdtFAQCA+iGIAIAmOzNU0B88vlvrD/XXdNxEWNT9qWe0tHhWebdNASEEAAAAXoMXBeoI8xqOdWvznDt0NrmkKetwjVFkrd5+23L97g+9TvM7E01ZBwAAqA2CCABokiiy+tftp/SXX99X0yoISeoIclqb2qAFpT7lvHaFxqvZ2AAAAJjejI3UGeQUOJ72dq3Rnu41sqY5bSNdIyVirt7/5qv1C3ddobhH+0oAAKYigggAaIJD5zP6/cd3a2eNmlGPNcsf1tr+DZrjDyrrdTRlf18AAABMcdYqGRUVs4F6kku1ec4dynmdTV3Sirnt+vO3rtED1yxs6joAAMD4EUQAQAMV/VD/9ORh/fO6I5JU0yoISZpf6tf9qWfUFWSU8TqbducaAAAApgcvCtQe5pX1OrV1zu061XZZ09biGCmy0tqrF+jPfuw6rVzQ3GAEAABcOoIIAGiQdQf79IEnduvscFGv/a/p+C0r9OiegU1KRkVl3Q5CCAAAANSEsZE6wpwi4+rFjtV6btZNTe0/5jpGkvSL91yh33jTanUn6YUGAECrI4gAgDo7O1zQX3xtn771wrnRu7hq7arcUd0xuF0xW1bG7ZSMqf0kAAAAmNESYUmJqKS+xHxtmXOHUvF5TV2PY6TuZEwf+JFr9N9ev3w0oAAAAK2HIAIA6qQcRHp44zF96DsHFUS25tswSZKs1ZrMPt2c3i1jrXJuOyEEAAAA6saxoTqDnEpOQnu612h/1zUt0ZPsmsVd+ou3rtGdK5sbjgAAgFdGEAEAdbDhUJ/++Ct7dWIgX7c5HBvqtqGdel32oALjqui21W0uAAAAYJS1aosK8myos4nF2jrndg3HZjV1SSOVxz+4ZpH+6Eeu0+Xz2pu6HgAAcDGCCACooROpnP7qG/v1nX3n67YNkyTFo5LuHtisFYWTKjoJlZ1EfSYCAAAAXoUbBeoI8yq6ST3ffYNe7Ly66X3KXMfISHr3vVfq1x5cpS76RwAA0BIIIgCgBoYLvj785CF9euNxSarPNkxVHUFW96c2amGpV3m3ramNAgEAADDDWav2sCBXI9URt2k4NrvZqxrtH/F7P3SN3n7bZfLc5gYkAADMdAQRADAJfhjpC1tO6oPfflHZUlC3CogR80v9undgo2b5aWW9jpbYjxcAAADwokDt1eqIvV3XtUzvCEm6akGH/vTH1mjt1QuavRQAAGYsgggAmABrrb6977z++hv7dbKOfSDGuiJ/QncOblUyKirjdja97B0AAAC4iLVqr/aOOB9foB2zb1VfovkX/0e2TL1v9Xz9yY9ep6sXdTV7SQAAzDgEEQAwTtuPD+ivvrFfz50aqmsfiBHGRroh/YJuyOyVYyNl3Q7JmPpOCgAAAEyQawN1BHn5TkwHO1ZpT/cNKrnN72nmOkaRtfrp25fr/W9+nRZ0NX9NAADMFAQRAHCJDp7P6G++eUBPHuiVa6SwzgGEJMWisu4c3KaV+WPyjaeikySEAAAAQOuzVsmopHhUVjrWree6b9Sx9ita4rOsa4xintGvPbBK77lvpZKx1thCCgCA6YwgAgBew5mhgj70nYP6t52n5RhT10bUY3X5Gd078KwWlnpVcJPynXhD5gUAAABqxdhIHWFlK9OzycXaOetmDcTnNXlVFcZI8zsS+v0fvkZvu2WZXKf5IQkAANMVQQQAvIrhvK+PPn1YD288psiqYQGEJC0tnNFdg1vUGWRpSg0AAIApz4t8tUcF+SamQx2rtLf7OhXc9mYvS0aSlXT1ok790Vuu0/2r58u0QNUGAADTDUEEALxEpujr0xuP62Prjqjoh3XvATGWsZGuy+zXTek98mygjNvZEuXrAAAAwKSN2a4p53Xoha5rdahjlQIn1uyVjfZ+e8PKufqjH7lON1w2q9lLAgBgWiGIAICqQjnUo5uO6yNPHVa2FDQ0gJCkZFjUnYNbtaJwUoHxVKAfBAAAAKYhYyO1hwW5CjXkzdbe7jU61r6iJaqAXaeyFesPrVms3/nBq7VqYVezlwQAwLRAEAFgxiv6ob649aT+8XuHNJT31eD8QZI0v9Snuwe2aI4/qILbJr8F7goDAAAA6smxodrDgoysUrG52tu9Rifblssap9lLk+sYRdbqbbcs0289dLWWz23+NlIAAExlBBEAZqyiH+pLW0/qw08eVipXbsoajI10TeZF3ZTeo0RUUsbrbIkTLwAAAKBRXBuoPSzIyqgvPl97u9fodHJZS1QHu46RtVbvuH25fuNNq7VkVluzlwQAwJREEAFgxin6ob6w5aQ+8lTzAghJagvzumNwu1YUTio0rvJOW0ucbAEAAADN4EWB2sKCrHHUm1igF7qubZ1AwhgZI/38G1bofzxwlRZ2JZu9JAAAphSCCAAzRqEc6gtbT+ojTx7WYL7clC2YRiwtnNGdQ9vU7afZigkAAAAYw4t8tYVFWVOpkNjXda1OtV3WEpXDjpE8x9Ev3L1C77v/Ki3oSjR7SQAATAkEEQCmvWwp0Oc2n9DHnj6i4UJzekCMiEVl3TS8W6/LHZIbhcp6HS1xQgUAAAC0mrGBxEBsjg50XaPjbZcrdLxmL200kPjvb7hc7117lRZ1UyEBAMD3QxABYNoaLvh65Nnj+uT6o8qWgqYGEJK0qHhetw9t17zygEpOXCUn0RJl5gAAAEArc6NAbVFBRlLa69LBzqt1tP1KFd3mX/x3jWSM0dtvu0y/snaVLp9HU2sAAF4JQQSAaSeVLenhjcf06Y3HVfRDRU1OIGJRWTek9+qa7EHFIl9Zr0ORcZu7KAAAAGCKcWyotrAo14YquG062n6lDnes1FB8TrOXNtrU+i03LNGvvnGVrlvK9RAAAMYiiAAwbZwdLuhT64/qs1tOKgijpgcQUqUXxOuHd2pueVBlJ64iVRAAAADApBgbKRmVFIt8+U5MZxOLdahzlc4klzT9hh/XMQojq3tXzdf71q7Uvavmy/D5HwAAgggAU9+Rvqw+9vQRPbGrR7JWYQsEEG1hXjcPP6+V+eNyo1A5r73pJ0UAAADAtGKt4rasZFhSZBylvW4d7rhKx9tXKOd1NHVprpFCK61e2Kn33r9Sb715qRIe5wMAgJmLIALAlLXn9LD+6alD+vYL5+VU7zxqNseGWpU7ohvTe9UR5FR0EyqbOFUQAAAAQB25NlAyLMm1ocpOXKeTS3Ws48qmV0kYSVbS7LaY3nXPFfrZOy/Xwq7m97YAAKDRCCIATCnWWj17JKWPPHVYzx5JjZY+t4KFpV7dOrRLC8t9iuQo77bJGqfZywIAAABmDmuViEpKRGVFxlHW69SR9it1ov1yDcdmN3VpTrWx9Y/euETvvPsK3bJ8Nts2AQBmDIIIAFNCEEb61gvn9NGnjmjf2XRLBRCdQUY3Du/RlYUT8qJAObddoeM1e1kAAADAjObaUMlqc2vfiakvvkDH2lfodNtlKrrNq0oYOZe5ZnGXfumeK/XWm5cqGWPbJgDA9EYQAaCl5UqBHtt+Sh9ff1TnhotyjFqiCbUkJcKSrskc0DW5g0qGRbZhAgAAAFqRtYpbX4mwJGOkkhNXT3KpTrYt15nkUvlOrCnLMkayVmqPu/qpWy/Tz9xxua5bynUUAMD0RBABoCX1ZUp65Nnj+syzx5UrBWqR7EGS5EW+VueO6LrMfnUGWflOTAUnSQABAAAAtDhjIyWisuJRWdYYFZ2kTrZdptNtl+lsYnHTKptHqiSuXdKln7njcr31pqWa3R5vyloAAKgHgggALeXFcxl9asNRfWVXjyJrW6b6QZLcKNDK/DGtyexXd5CmDwQAAAAwhTk2VCIqKxb5sqby2f5E2+U63bZM5xMLm9LkeuTWJtcxetO1C/WTt16mN75ugRIeWzcBAKY2gggATRdFVusO9emT64+2XANqqVIBcWX+uK7L7NesIC0ro7zb1pQTEwAAAAC1VwklSopFgSLjKOe261TbcvUkl+p8YmFTKiVGzos6E57ecuMS/fhNS3XnynlyHSqxAQBTD0EEgKbJlwM9sbNHn9pwVMdT+ZYLIGJRWStzx3Rt9oC6gwwBBAAAADADuDZQIirLq4YSBTep08nL1JNcqnPJxU3pKTFyrjSnPaa33LBEP3LDEt1x5Vx5LtXZAICpgSACQMOdGsjrc1tO6PObTypbCmSkluoB0R7ktSp3WKtzh9UZ5hURQAAAAAAz0sXbN1V6SpxJLtGZ5BKdTS5WwW1v+JpGQomupKcfvn6xfnDNYt2zar6SMc5XAACtiyACQENEkdWGw/36zMZjevrFPhmjlur/IElzyoNalTuilfljSoZFBcZTwU3SAwIAAACAHBsqHpUVs4EkyTcxpeLzdLptqc4lFmsgNkcyjd02aSSUSHiO7ls9X2++bpHe+LqFWtSdbOg6AAB4LQQRAOpqIFfWl7ef0qObTqhnqNBy2y85NtSy4lmtyh3WkuI5xSJfZSemopNs+EkEAAAAgKnB2EjxyFfclmVkFRhPebddp5LLdD6xSOcTC1V2Ew1dk2uksHqq9bpFXXrTtQt17+r5ev2KOTS7BgA0HUEEgJqz1mrLsQF9fvMJfXPvOYXW6rX/9WisLj+tFYWTWpU7qq4gI8dGKroJlU2cAAIAAADApbNWng0Uj3x5CmRlVHbi6o0v0NnkEvUmFmggNqfhldYjN4HFXUe3XTFH961eoHtWzdOapbNoeA0AaDiCCAA1c3a4oMd3nNaXtp3S6cHWq36IRWVdVujRlfnjWlzqVcyWFcpV0U0oNF6zlwcAAABgGqhUS5QVt76MtQodT3knORpK9MUXKO11NfQGKCONbo/bHnf1hpXzdNfKebr9yrlas7RbMZpeAwDqjCACwKQUyqH+64Vzemz7KW06kmq53g/GRlpU6tWK/AmtKJxSMipKViq5caofAAAAANSXtfJsqJgtKxYFkjHyq9s4nU0sUn9igfri85T2uht6bjJSEBFZKe46unH5LN1+xVzdsny2bl4+WwvpMQEAqDGCCADjFoSRNh5J6au7evTNvWdV9CM5LRRAODbUwlKflhV6tKJwSh1hXo6N5Dueik6C5tMAAAAAmsNaxWygWOTLs5VgIjCu8m6bzscXqj8xXwOxuRqMzVboNLZq23OMgupJ3byOuG69fI5uvGyWrl82S2uWdhNOAAAmhSACwCUJI6utxwb09d1n9PXdZzVc8Ftq66VY5GtR6byWFM9peeGUOsKCHIUK5KnkxBv+IR4AAAAAXtNIMGF9edWKiVCOfCemVGxuNZiYo6HYbGW8zobeVOUYycgorF4Kmt0e0w3LZumGZbP0usVdunZJt66c38G2TgCAS0IQAeBVFf1Qm46k9K0Xzulbe8+1VvhgrbqCjBaXerWkeFZLSueUiMoyNlLgVMMH+j4AAAAAmEqslWtDxWwgz/pyJFlJgfFUduJKxeZqID5Hw7FZGva6lfa6G3rTlVGlCfZI5YRrjJbPbdN1S7q1alGXVi/s1KqFnbpyfoeSMbdh6wIAtD6CCAAX6RkqaP3BPn13/3k9c6hfpSBqmfAhGRY1v9yvhaVeLS2eVXeQUSwKZCX5TuWDeWT4sAsAAABg+jA2kmdDeTaQZwMZSbJWgeMpNK4ybpcG4nOU9rqU8bqU9TqV8TrlO/GGrdExkmMuBBRG0qLupFYv6tRVCyrBxBXzO3TlvA4tnZ2URxUFAMw448kNuLUYmIbSRV9bjg5o4+F+PfVir06k8pJ0Uc+HpoQQ1qojzGleeUDzyiktLvVqtj+kmPVlrBQaR2UnpoKXpOE0AAAAgGnLGke+ceQrNubNShNs1waa4w9qfrlf1hgZWYXGVSBXJTdZrZroUs7rVM5tV776KLjJmm7zFFkpGnPvqpV0Ll3UuXRRm46kFEZWI991HaOls5JaWQ0oVsxr14p57bp8boeWz21TwuPmMgCY6QgigGmgL1PSzpOD2nZsQM8eSWn/ubSsvbgxmdT4xtOxqKw5/pBm+0OaVx7QwlKvOsJ85Y4fK0XGyDcxZd0Omk0DAAAAmNmMUWC8Sk+8se9Xt3bybKj2MK+uICNjrayMjLEK5SoyjkLjqugklHM7lPfaVXDbVHSSKjoJldxE5bn6CIw3qZu/gpecXIaR1anBgk4NFrTxcL9CazWSYRhJ8zsTumJ+ezWk6NBlc9p02Zx2LZ/bpgWdCRluRAOAaY8gAphisqVAL/QMa0/PsJ47NaTtJwZ1brgo6eXBw0s/HNZNtdJhVpBWt5/WbH9I88spdQY5xWwgx4aSkQJ5ChxPRSdB8AAAAAAAl8IYhcZT+EqXcKyVq0iODeXaSJ1hTt1BRk4xkjVGspKRlTWOIhlFxlGkSmgxEk4UnaRKTkJlN66SE1fZxFV24vKdmMrVr0vVry/lPO6l56FWUl+2pL5sSTtPDkm6uEI/7jpaOjupK+Z36PK57Vo+p13L5rTpsjltWja7TXM74gQVADANEEQALaoUhDqZyuvg+awOns/owLm09vQM68xQJXRwTOXOknDMZ7y6Bg/WKhmV1B7m1BHk1Rlm1RlkNccfUneQVjzy5dlQkpWx1dJh46ngJhXKYaslAAAAAKg1YxTKVWhc+a/2M9bKyMqxkZzqs2d9xf2yZmlYpnoOZ1U5yTTVDZcqP10JL0aeA+Op5FQDDLcaYDixSmhRDTBGHqXqs29io+eDr7RFcDmMdDyV1/FUXp5jFFl7UTV/3HW0eFZSl89t0/K57Vo2u01LRx6z2rR4VlJxjxvdAKDVEUQATWKt1VDeV89QQacHCzo9mNeJVF7HUjkd6c3qXLo4Wsr6Sh/Gapk5ODZUIiopGZYqz1FRbWFRybBQLf3NqjPMKRb5cm0oV5Fs9c6akRLgoFoGXPnwSugAAAAAAC3BGFkZhcZReKnHjIQXimTsyHOkhC0pGRY0R5XvG1lZW71LTtVzRDmyxihSpfoiMs5F4UXRSaroXtgmqvSSraOil2wbVQ4jnRzI6+RAXp4zIKuLAw0jaXZ7TEtmtenyeReCisXdSS3qTmhRd1ILuxP0qQCAJiOIAGrIWqtcOdRgrqzBfFkDubJS2bJSuZL6MiX1Zko6M1TQmaGi+jIllcNo9FjHSI4xr1jVcEmVDtUPh7EoqNzdEvnybKB4VFbM+opFvuJRWfGorERUroYNBbVFxWrAEMkoqtwlY6MLd8NUqxsqgYMj3yQUGpewAQAAAACmq5HwQs5oyHBJrK3UUdjRegq5NlBn6KsrSFe/ZyvbRkmjr0cCi0rVhVsNK9qUr/a5GAkrKsFFXEUnoXL1tTWOBvO+BvO+9p9LyzUvv5FPkrqSnhZ2JbRkdpuWdCe1oCuh+Z0Jze9KaH5nXAurX3cnY3IczncBoNYIIoCXKAeRsqVAmaKvTDFQuuArUwqUKQbKFn2li4GGC37lkfc1kC9rMFfWUL6sdDF4xdBgJGR4pQ9DxkbybFANEC48YtUgYez3YtaXF1W+F7dlxSNfsdGgIZCrUMZeuDPFsZUPfsZaSUZ25C6Vl37YG707xlPkOFQ1AAAAAADGzxhFMtKlVl+MqbxwbGXbqJj1lQhLmuMPVW6SGxNaaPQ89sL5rG9ilXDCbVPBSarsxkd7W1zocxGTX46pNxNTz7mYIjemyLiK9PLdBhwjdSdjmtMR19yOuBZ0xjWnI65ZbXHNaY9pdntMs9rimtUWU3ebp+5kTF1JT50JT57LFlEA8GoIIjBtBOFIgBAoW6o+ioEypUC5Ma9HAoZM0ddQ3tdQwVe26CtbCpUvB/LDV68+GAkUZCRFkUzojwYFMetrXvV5JEQYCQg8G8irViQkorLitqxY5CtmK5UIjo1Gw4OxQYKp7s000mRspEJh5L2Rn4wuej1y34mRdS68T7AAAAAAAGgpYyovwks5ZbUjocWFfhdJW1R7mJfxB+XYyq4Do+GF7IVNpKrhxYXXRoGJyXc8+SamwIkpMJ584ykwriJT6b1x3jg65zgjG1UpslJkjI63r1DBbb9oeQnPUUfcVUfCU2fSU1cypq6Ep/aEp/aYq/aEq/a4q7aYq7a4V3121BZzlYi5SnqukjFHcc9RwnOV8Cqv42712XPkOYbm3QCmJIIINFU5iJQrBcqVA+VKYfW5+rr6frZ04b2RgCFd8JUu+soULgQNpSB61XmMjRSr3O+vmEKZKJQJA7k2kGdDeTbQHBtq/sjX1e2NYjaoViCUlbCV6oP4aIAQjik3fXmAYMd+MKj2UxgbHox88LkQJFz4QDT25wgQAAAAAABQtSKiEhJckuqNfCO9LkbPvK2Vq0ieLaotHHMuP+aGQEkXn9e/RGA8HepcfdF7pSBSKYg0kL+4dfjoTY1jvNKOCZfCmEofSc9xFHONYtWQIuZWvr7wuvKIV9+7+P3K8Z5rFHcrzyPjeW4l7BgJQGLuhZ8bO1clLKk8Yq6j2EhgMiY0cdniCsAYBBGTZK1V0b9wAfyia88v3YLn+/z7W7nJ3rzs517pkJHkO93Xq3NHDl40mR152Avru/CelbWqPqwiWUVR9ZdfVPkFGNlIoZXCMFJUfQ4jqyCyimykIJSCKFIQ2cr7YaQgtPKjSEEYyQ+t/CCUH0byg0jlMFQ5iFTyQ5XDSOUgGv1+EESKZGVsZeXVy+4Xby1Ufc8ZuWRvrWQrTbK6rdUchdWKgrDSRNmGcmwkt/r+yHuvVG2gl8x1UfVB9Q9z5OdeGiCMrUQIRgIEZ7SV12v/Hw4AAAAAAOqrel4eyR1fr4vX0BVkxvXzlestE0gdXoG1qlx7CUMV/Nf++RFG1WtPxlz4ozCSsdLYlY1eP9LLr2uNl2uMYp65KJxIVKs+kp6rtnjlkRxTDZKMVSpGRl+PVJDEXCWrr9vj1cqSalVJe7xSPUKlCNDaCCIm6f2PPa+v7OppytyvH9qp69MvfN+EfrKMLv6F9Erff7X345JikjoudTL7kgHHfm2raxmzNZF0ITSwevlzpR/CaOQwZtuiC7GHdczoz1B9AAAAAAAApqPRYKFGgcilCK1V6F98A+8rMdWKkZGwZGSJ46kaMdJolUbbaGDhqb26VVZ73B3z/sXBRiX4cEeDj6TnjH49EogkPVeJmEPgMQVE1RuqKzdWR4qiyk3VYWQrfyejC4+RkLDyunID98jfu4sDucpfxJXzOzWnI97M/3lTGkHEJJ0ZKjRt7srd/FLeaWvaGqaykeqLi6KWxv0+BgAAAAAAU5Dh2kFNWVsJLSY1hi5sjZUuBrVZ2DiNVoCM2aYq9rItsSrbX8VcI9dxFHOMXMfIc40cU3ntmkofENeRXOfC+44xo6HN2B6mY0OcsbutmJEXevmNxBf9aY+54G41cjF+zOvqBfsL3xtzEb96cT+qXsgPR957hYv+I2FAEFkF4UhYEI15bSs7qFR3YPHDMWFCi/w398A1C/Tpd93R7GVMWQQRk9SZbN4fYeB48h1PcVtu2hoAAAAAAABmknK1sTUw1qVWgGDqemmvF4wP/2pO0ofecbNOpvJNmTsK7lRhMNWUuQEAAAAAAGaqn523UMZxmr0MzBAjVSOV7YOswujC1kFRpZThZVUNdvTYi8sJzCtUSYxUUxhz8euxVRgjVRYj1Rkz0eXz2pu9hCmNIGKSupMxXb9sVvMWsGJ+8+YGAAAAAAAAAOA1EN0CAAAAAAAAAIC6IYgAAAAAAAAAAAB1QxABAAAAAAAAAADqhiACAAAAAAAAAADUDUEEAAAAAAAAAACoG4IIAAAAAAAAAABQNwQRAAAAAAAAAACgbggiAAAAAAAAAABA3RBEAAAAAAAAAACAuiGIAAAAAAAAAAAAdUMQAQAAAAAAAAAA6oYgAgAAAAAAAAAA1A1BBAAAAAAAAAAAqBuCCAAAAAAAAAAAUDcEEQAAAAAAAAAAoG4IIgAAAAAAAAAAQN0QRAAAAAAAAAAAgLrxLuWHrLWSpHQ6XdfFAAAAAAAAAACA1jeSF4zkB9/PJQURmUxGkrR8+fJJLAsAAAAAAAAAAEwnmUxGs2bN+r4/Y+wlxBVRFOnMmTPq6uqSMaZmCwQAAAAAAAAAAFOPtVaZTEZLly6V43z/LhCXFEQAAAAAAAAAAABMBM2qAQAAAAAAAABA3RBEAAAAAAAAAACAuiGIAAAAAAAAAAAAdUMQAQAAAAAAAAAA6oYgAgAAAAAAAAAA1A1BBAAAAAAAAAAAqBuCCAAAAAAAAAAAUDf/D/cZfhqse2nsAAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"az.plot_energy(result_spike_slab.idata, figsize=(20, 6));"
]
},
{
"cell_type": "markdown",
"id": "5bffd8b6",
"metadata": {},
"source": [
"And since we know the true data generating conditions we can also assess the derived posterior treatment estimates. "
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "838e0726",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABiIAAAIvCAYAAAD588N2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAA6C1JREFUeJzs3Xd4VFXixvF3Jr3RA6ElIYHQq4h0Qm8iSFOKCtgbCqLu/mxgYVFUVBTFgqCiCCig9N5775BOJyG09GQy8/sjm2gWkIRkclO+n+fJs5N775z7zohrmDfnHJPNZrMJAAAAAAAAAADADsxGBwAAAAAAAAAAAMUXRQQAAAAAAAAAALAbiggAAAAAAAAAAGA3FBEAAAAAAAAAAMBuKCIAAAAAAAAAAIDdUEQAAAAAAAAAAAC7oYgAAAAAAAAAAAB2QxEBAAAAAAAAAADshiICAAAAAAAAAADYDUUEAAAAUESYTCaZTCajYwAAAABArlBEAAAAALjB1atXNX78eH3yySdGRwEAAABQxJlsNpvN6BAAAAAAbi9zNkRB/AgfGRmpGjVqyM/PT5GRkXa/HwAAAIDiixkRAAAAAAAAAADAbigiAAAAAAAAAACA3VBEAAAAAEXQzz//rBYtWsjT01PlypVTv379dPjw4Vteb7PZNGfOHHXt2lXly5eXi4uLAgICNHr0aF24cCHbtSNGjFCNGjUkSVFRUVmbZP/vZtlJSUn65Zdf9OCDD6p27dry9PSUp6enmjRponfffVcJCQl5eo0jRoy44d7/++Xv75+newAAAACwP/aIAAAAAIqIzBLg/fff16uvviofHx9Vq1ZNJ06cUFxcnNzc3LRy5Uq1bds22/PS0tI0bNgwzZs3T5JUpUoVeXt7KyQkRImJiapcubLWr1+voKAgSdLEiRO1YMEC7d69Wy4uLmrevHm28TZv3pz1v+3atZOjo6N8fHzk4+Oja9euKSIiQhaLRc2aNdPmzZvl5uZ2R6934sSJWrp06U3PnTlzRlFRUexhAQAAABQBFBEAAABAEZFZRDg5OWnSpEl68cUXZTablZiYqCeeeEKzZ8+Wn5+fjh07lu3D/3//+9+aNGmSmjZtqhkzZqhJkyaSMmY0jBs3TtOmTVPz5s21a9eurOfkZLPqqKgo7dy5Uz179pSnp2fW8QsXLuj555/X/PnzNX78eL311lv5+j5ER0erefPmOn36tCZNmqRXX301X8cHAAAAkL8oIgAAAIAiIrOIuO+++7Ro0aJs51JTU+Xn56cLFy5oxowZGjlypCQpJiZG1atXl4uLi44cOaJq1aple57ValXLli21a9cubdy4Ue3atZOUsyLinyQlJalMmTLy8/PTyZMn7+DV3lxaWpo6d+6sTZs26cEHH9Qvv/ySb2MDAAAAsA/2iAAAAACKmGefffaGY87OznrsscckSStWrMg6vnTpUqWkpKh79+43lBCSZDabde+990qSNmzYkOssVqtVixYt0rPPPquePXuqXbt2atu2rbp27SqTyZS1/FN+ef7557Vp0yY1a9ZMM2bMyLdxAQAAANiPo9EBAAAAAORO3bp1//H432cgHDp0SJK0ffv2G/aOyHTx4kVJ0tmzZ3OV4+rVq+rVq5e2bdv2j9dduXJF7u7uuRr7Zr788ktNnz5dFStW1MKFC+947wkAAAAABYsiAgAAAChiKlaseNPjlSpVkiTFxcVlHbt27Zok6fTp0zp9+vQ/jpuUlJSrHGPHjtW2bdtUu3ZtTZw4US1btlSFChXk7OwsSapWrZrOnj2rtLS0XI17M5s2bdILL7wgJycn/fbbb6pevXqexwQAAABQMCgiAAAAgCImJibmpsssRUdHS5K8vLyyjmVuIv3aa6/p3XffzbcMFotFc+fOlSQtWrRItWvXvuH8hQsX8uVep06d0oABA5SWlqbp06ffcmYHAAAAgMKJPSIAAACAIubYsWP/eDwoKCjrWL169SRJhw8fztU9MjfGvpWYmBglJCSoXLlyN5QQmfdLT0/P1T1vJikpSf369VNMTIyeeeYZPfHEE3keEwAAAEDBoogAAAAAiphp06bdcCw1NVXfffedJKlbt25Zx3v37i1nZ2ctXbpUISEhOb5H5v4Lt1quKfP89evXb3rNBx98kON7/ZNRo0Zp37596tChgz799NN8GRMAAABAwaKIAAAAAIqYJUuW6NNPP5XNZpOUURY8/vjjOnfunKpXr64HH3ww69oqVaroxRdfVFpamrp3767169dnG8tms2nnzp16+umnFR4ennXc29tbXl5eio6OvukMjDJlyqh+/fqyWCwaM2aMUlNTJUnp6el6//339euvv2btFXGnJk2apDlz5sjPz0/z58+XoyMrywIAAABFkcmW+bcXAAAAAIVa5nJJ77//vl599VX5+PioevXqOnHihK5fvy5XV1etWLFC7du3z/Y8i8WikSNH6qeffpIk+fj4yNfXVykpKQoPD8/a3PrYsWOqU6dO1vMeffRRzZgxQ66urmrQoIE8PDwkKavM+PPPP9W3b1/ZbDaVK1dOAQEBioyM1KVLl/TGG2/ohx9+UFRUlCIiIuTv75/r1+vv76+oqCj5+/uratWqN72mcuXKmjdvXq7HBgAAAFBwKCIAAACAIiKziLDZbPr555/1ySef6MiRI3JyclKHDh30zjvvqFGjRrd8/tKlS/XNN99o+/btio2NVdmyZVW9enW1atVKAwcOVLt27WQ2/zVpOj4+Xq+//roWLVqks2fPKi0tLev+mVasWKG3335b+/btk6Ojo+rXr6/nnntOw4YNyyoS8lpE/BM/Pz9FRkbmemwAAAAABYciAgAAAAAAAAAA2A17RAAAAAAAAAAAALuhiAAAAAAAAAAAAHbjaHQAAAAAAMXfhQsXNHDgwBxf/9prr6lnz552TAQAAACgoFBEAAAAALC75ORkbdmyJcfXX7x40Y5pAAAAABQkNqsGAAAAAAAAAAB2wx4RAAAAAAAAAADAbigiAAAAAAAAAACA3VBEAAAAAAAAAAAAu6GIAAAAAAAAAAAAdkMRAQAAABRiJpMp11/BwcFGx853kZGRGj9+vGbOnGl0FAAAAAC55Gh0AAAAAAC31qZNmxuOXbt2TYcPH77l+YYNG9o9V0GLjIzUhAkT1KFDB40YMcLoOAAAAABygSICAAAAKMQ2b958w7H169erY8eOtzwPAAAAAIUJSzMBAAAAAAAAAAC7oYgAAAAAkOXy5ct666231LRpU5UqVUqenp6qW7eunnrqKe3bt++G62NjY/XKK6+odu3acnNzU9myZRUcHKzZs2fLZrPdcP3MmTNlMpk0YsQIpaSkaPz48apZs6ZcXV1VvXp1jR07VgkJCdmeExwcnDUDZMOGDdn2w/D397fL+wAAAAAg/7A0EwAAAABJ0oEDB9SrVy+dO3dOZrNZderUkbOzs8LDwzV9+nQlJydn2yw6NDRUnTp10unTp+Xs7KwGDRro6tWr2rBhgzZs2KCVK1dmFQ//Ky0tTd26ddOmTZtUr149+fv7KyQkRFOmTNHhw4e1cuXKrGsbNmyo2NhYHT58WKVKlcq2B0blypXt+p4AAAAAyDuKCAAAAAC6fv267rvvPp07d049evTQN998o2rVqmWd37Rpk06dOpX1vc1m05AhQ3T69Gl16NBBv/76qypVqiRJWr58uQYOHKgffvhBLVu21NNPP33D/ebNm6datWrp+PHjCgoKkiRt375d3bt316pVq7R8+XL16NFDkjR16tSsfTGaNm2q9evX2/GdAAAAAJDfWJoJAAAAgKZPn65Tp06pbt26WrhwYbYSQpLatWunYcOGZX2/Zs0a7d69Wy4uLpozZ05WCSFJPXr00FtvvSVJev/992+6RJPFYtGsWbOySghJatmypR577DFJ0rJly/L19QEAAAAwDkUEAAAAAC1atEiS9MILL8jFxeW212cunTRo0CD5+PjccP6pp56Si4uLoqKidOLEiRvON2nSRM2bN7/h+N133y1JCg8Pz1V+AAAAAIUXRQQAAAAAHTt2TFLGrIScOHnypCSpXr16Nz3v5eWl6tWrZ7v27wIDA2/6vIoVK0qS4uPjc5QDAAAAQOFHEQEAAABA169flySVKVMmR9dnFgWZxcHNZC7XFBcXd8M5Dw+Pmz7HbM74K8rNlnMCAAAAUDRRRAAAAACQl5eXJOnq1as5ut7T01OSFB0dfctrLl68mG1sAAAAACUTRQQAAAAA1a9fX5K0ffv2HF2fucn00aNHb3o+Li5Op0+fznZtXphMpjyPAQAAAMAYFBEAAAAA1K9fP0nS1KlTlZqaetvru3fvLkmaN2+eLly4cMP56dOnKyUlRX5+fqpdu3ae87m5uUmSkpKS8jwWAAAAgIJFEQEAAABATzzxhPz8/HTkyBH1799fZ8+ezXZ+8+bNmj17dtb3nTp10t13362UlBQNGTIk2xJNK1eu1IQJEyRJ//rXv/JlNkONGjUkZczAiImJyfN4AAAAAAoORQQAAAAAeXl5adGiRfLx8dGSJUvk6+urBg0aqGnTpipTpozatWunVatWZV1vMpn0888/q1q1alq/fr18fX111113qVatWurevbvi4+P10EMP6cknn8yXfN7e3urUqZPi4+MVGBioli1bKjg4WA8++GC+jA8AAADAfigiAAAAAEiSGjdurMOHD+vf//636tatq4iICIWFhalKlSp6+umnNWbMmGzX16xZU/v27dO4cePk6+urI0eOKDo6Wu3bt9ePP/6oWbNm5eveDj///LNGjBihUqVKac+ePdqwYUOO97QAAAAAYByTzWazGR0CAAAAAAAAAAAUT8yIAAAAAAAAAAAAdkMRAQAAAAAAAAAA7MbR6AAAAAAA8teMGTM0Y8aMHF+/efNmO6YBAAAAUNJRRAAAAADFzKlTp7RlyxajYwAAAACAJDarBgCgwKWlpenrr7+WJD3xxBNycnIyOBEAAAAAAID9UEQAAFDAEhIS5OnpKUmKj4+Xh4eHwYkAAAAAAADsh82qAQAAAAAAAACA3VBEAAAAAAAAAAAAu6GIAAAAAAAAAAAAduNodAAAAAAAAAAAQP6xWq1KTU01OgaKOCcnJzk4OOTLWBQRAAAAAAAAAFBMpKamKiIiQlar1egoKAbKlCkjHx8fmUymPI1DEQEAAAAAAAAAxYDNZtP58+fl4OCg6tWry2xmZX7cGZvNpsTEREVHR0uSKleunKfxKCIAAChgLi4uWrx4cdZjAAAAAADyg8ViUWJioqpUqSJ3d3ej46CIc3NzkyRFR0erYsWKeVqmiSICAIAC5ujoqN69exsdAwAAAABQzKSnp0uSnJ2dDU6C4iKz0EpLS8tTEcHcHAAAAAAAAAAoRvK6nj+QKb/+LDEjAgCAApaWlqbZs2dLkoYNGyYnJyeDEwEAAAAAANgPMyIAAChgqampGjlypEaOHKnU1FSj4wAAAAAAgFxav369TCaTrl69anSUIoEiAgAAAAAAAABgmBEjRshkMmnSpEnZji9cuJBlpooJiggAAAAAAAAAgKFcXV31/vvv68qVK/k2JqsQFB4UEQAAAAAAAAAAQ3Xp0kU+Pj76z3/+c8trfvvtN9WvX18uLi7y9/fXRx99lO28v7+/3n33XY0YMUKlS5fW448/rpkzZ6pMmTJavHixateuLXd3dw0cOFAJCQmaNWuW/P39VbZsWT3//PNKT0/PGuunn35S8+bN5eXlJR8fHw0dOlTR0dF2e/3FHZtVAwAAAAAAAEAxZLPZlJSWfvsL7cDNySFXyyo5ODho4sSJGjp0qEaPHq1q1aplO79nzx4NHjxY48eP1wMPPKCtW7fqmWeeUfny5TVixIis6yZPnqw33nhDr7/+uiRp8+bNSkxM1GeffaY5c+YoLi5O/fv3V//+/VWmTBktXbpU4eHhGjBggNq2basHHnhAUsZsinfeeUe1a9dWdHS0xowZoxEjRmjp0qV5f3NKIIoIAAAAAAAAACiGktLSVe/NFYbc++jb3eXunLuPn++//341adJEb731lr777rts5z7++GN17txZb7zxhiQpKChIR48e1eTJk7MVEZ06ddK4ceOyvt+8ebPS0tL05ZdfKjAwUJI0cOBA/fjjj7p48aI8PT1Vr149dezYUevWrcsqIkaNGpU1RkBAgD777DO1aNFC8fHx8vT0zNXrAkszAQBQZNhsNsWnxstmsxkdBQAAAAAAu3j//fc1a9YsHT16NNvxY8eOqU2bNtmOtWnTRiEhIdmWVGrevPkNY7q7u2eVEJJUqVIl+fv7ZysUKlWqlG3ppX379qlv377y8/OTl5eXgoODJUmnTp3K0+srqZgRAQBAAXNxcdHcuXOzHt/O9ZTremfDO5p7dK5OXTslR7Ojgv2D9eI9L6p3UG97xwUAAAAAFFFuTg46+nZ3w+59J9q3b6/u3bvr//7v/7LNdLDZbDcs9XSzX9Tz8PC44ZiTk1O2700m002PWa1WSVJCQoK6deumbt266aeffpK3t7dOnTql7t27swH2HaKIAACggDk6OmrQoEE5unbf+X0aMHeAIq5GZB2zWC1aHb5aq8NXa3SL0fqo+0dyNPOfdAAAAABAdiaTKdfLIxUGkyZNUpMmTRQUFJR1rF69etq8eXO267Zu3aqgoCA5ONxZ6XErx48f16VLlzRp0iRVr15dkrR79+58vUdJw9JMAAAUUgcvHlTnHzor4mqE/Er76bfBv+nKq1d0/NnjevGeFyVJn+38TCMWjmC5JgAAAABAsdGwYUMNGzZMU6dOzTr20ksvac2aNXrnnXd08uRJzZo1S59//nm2/SDyi6+vr5ydnTV16lSFh4frjz/+0DvvvJPv9ylJKCIAAChgFotF8+bN07x582SxWG56zYX4C+r2YzddSb6iltVa6sBTB9S/bn+VcS2j2hVqa0qPKZo/aL4czY6afWi2JmyYUMCvAgAAAAAA+3nnnXey/dJds2bNNHfuXM2ZM0cNGjTQm2++qbfffjvb8k35xdvbWzNnztS8efNUr149TZo0SR9++GG+36ckMdn4FUoAAApUQkJC1oZY8fHxN6xfabVZ1XN2T60MW6kGFRto08hNKuNa5qZjfbv3Wz3+5+OSpPWPrFcH/w52zQ4AAAAAKLySk5MVERGhGjVqyNXV1eg4KAby688UMyIAAChkpu2appVhK+Xm6KZfB/56yxJCkh5r9pgeb5ZRRDz6x6NKTEssoJQAAAAAAAA5QxEBAEAhEp0QrdfXvi5Jmtx1sup517vtcyZ3naxqpaop7EqY3tv4nr0jAgAAAAAA5ApFBAAAhci/V/9b11KuqVnlZnqq+VM5ek5p19Ka2jNjA68p26fofNx5e0YEAAAAAADIFYoIAAAKieOXjmvmgZmSpM97fi4Hs0OOn9u3dl+1rt5aSZYkNq4GAAAAAACFCkUEAACFxLsb35XVZlXf2n3VqnqrXD3XZDJpUudJkqQZ+2bo9LXT9ogIAAAAAACQaxQRAAAUAidjT+qXw79Ikt7q8NYdjdHOr506+ndUmjVNU7ZPyc94AAAAAAAAd4wiAgCAAubs7Kzvv/9e33//vZydnSVJn27/VFabVfcG3aumlZve8divtnlVkvT1nq8VmxibL3kBAAAAAADygiICAIAC5uTkpBEjRmjEiBFycnLSteRrmnVgliRpTMsxeRq7W2A3NfFpooS0BH295+v8iAsAAAAAAJAnFBEAABhs1oFZSkhLUD3veuro3zFPY5lMJr14z4uSpOl7pivdmp4PCQEAAAAAAO4cRQQAAAXMYrFoyZIlWrJkiVLTUvX5zs8lSc/d/ZxMJlOexx9cf7DKuZVT1LUoLQ1ZmufxAAAAAAAozIKDg/Xiiy9mfe/v769PPvnEsDy5YTKZtHDhwjt67ogRI9SvX78cXx8ZGSmTyaT9+/ff0f3ywrHA7wgAQAmXkpKie++9V5K04MAChVwOUWmX0nqo8UP5Mr6bk5tGNRmlD7d9qC93f6k+tfvky7gAAAAAABRGv//+u5ycnIyOgX/AjAgAAAz05e4vJUkjm4yUp7Nnvo37xF1PSJJWhK3QxfiL+TYuAAAAAACFTbly5eTl5WV0DPwDiggAAAy0MmylTDLp2RbP5uu4tcrXUouqLWS1WfXrkV/zdWwAAAAAAPLT/Pnz1bBhQ7m5ual8+fLq0qWLEhISJP21/NCECRNUsWJFlSpVSk8++aRSU1Oznv+/SzP9r++//16lS5fWqlWrJElHjx5Vr1695OnpqUqVKumhhx7SpUuXbvn82NhYDRkyRNWqVZO7u7saNmyoX375Jds1wcHBGj16tF555RWVK1dOPj4+Gj9+fLZrQkJC1L59e7m6uqpevXpZee70vflfy5cvV9u2bVWmTBmVL19e9957r8LCwm647vjx42rdurVcXV1Vv359rV+//rY58ooiAgAAg3UN7Kqa5Wrm+7jDGg6TJM0+NDvfxwYAAAAAFH42m00JqQmGfNlsthxlPH/+vIYMGaJRo0bp2LFjWr9+vfr375/t+WvWrNGxY8e0bt06/fLLL1qwYIEmTJiQo/E//PBDjRs3TitWrFDXrl11/vx5dejQQU2aNNHu3bu1fPlyXbx4UYMHD77lGMnJybrrrru0ePFiHT58WE888YQeeugh7dixI9t1s2bNkoeHh3bs2KEPPvhAb7/9dlbZYLVa1b9/fzk4OGj79u366quv9Oqrr+b5vfm7hIQEjR07Vrt27dKaNWtkNpt1//33y2q1Zrvu5Zdf1ksvvaR9+/apdevWuu+++xQbG5uTt/OOsUcEAAAGe7jRw3YZ94H6D2jsirHaeXanQmJDVKt8LbvcBwAAAABQOCWmJcrzP/m3DHBuxP87Xh7OHre97vz587JYLOrfv7/8/PwkSQ0bNsx2jbOzs2bMmCF3d3fVr19fb7/9tl5++WW98847Mptv/bv2//73vzVr1iytX78+a8wvv/xSzZo108SJE7OumzFjhqpXr66TJ08qKCjohnGqVq2qcePGZX3//PPPa/ny5Zo3b57uueeerOONGjXSW2+9JUmqVauWPv/8c61Zs0Zdu3bV6tWrdezYMUVGRqpatWqSpIkTJ6pnz555em/+bsCAAdm+/+6771SxYkUdPXpUDRo0yDr+3HPPZV375Zdfavny5fruu+/0yiuv3HLsvGJGBAAABvJw9lC/Ov3sMnYlz0rqGthVErMiAAAAAACFU+PGjdW5c2c1bNhQgwYN0jfffKMrV67ccI27u3vW961atVJ8fLxOnz59y3E/+ugjTZ8+XZs3b8724f2ePXu0bt06eXp6Zn3VqVNHkm66jJEkpaen67333lOjRo1Uvnx5eXp6auXKlTp16lS26xo1apTt+8qVKys6OlqSdOzYMfn6+maVEJmv45/k5L35u7CwMA0dOlQBAQEqVaqUatSoIUk35Pz7fR0dHdW8eXMdO3bsH7PkFTMiAAAwUN/afXP0GyJ3aljDYVoeulyzD83WWx3ekslkstu9AAAAAACFi7uTu+L/HW/YvXPCwcFBq1at0tatW7Vy5UpNnTpVr732mnbs2JH1Qfqt/NPfcdu1a6clS5Zo7ty5+te//pV13Gq1qk+fPnr//fdveE7lypVvOtZHH32kKVOm6JNPPlHDhg3l4eGhF198Mds+FZLk5OR0Q77MZZFutpzS7f6Ontv3pk+fPqpevbq++eYbValSRVarVQ0aNLgh583Y+/MCZkQAAFDArGar3Pq6Sb2kR5o9Ytd79avTT+5O7gq9HKpd53bZ9V4AAAAAgMLFZDLJw9nDkK/cfLBtMpnUpk0bTZgwQfv27ZOzs7MWLFiQdf7AgQNKSkrK+n779u3y9PTMNrvgf7Vo0ULLly/XxIkTNXny5KzjzZo105EjR+Tv76+aNWtm+/LwuPkvCm7atEl9+/bV8OHD1bhxYwUEBCgkJCTHr0+S6tWrp1OnTuncuXNZx7Zt23bb593uvckUGxurY8eO6fXXX1fnzp1Vt27dW86e2L59e9Zji8WiPXv2ZM0KsReKCAAACtiKiBVKapqkal2qqUutLna9l6ezp/rW7itJmn2Q5ZkAAAAAAIXLjh07NHHiRO3evVunTp3S77//rpiYGNWtWzfrmtTUVD366KM6evSoli1bprfeekvPPffcP+4PIWUsQbRs2TK9/fbbmjJliiTp2Wef1eXLlzVkyBDt3LlT4eHhWrlypUaNGqX09PSbjlOzZs2smQnHjh3Tk08+qQsXLuTqdXbp0kW1a9fWww8/rAMHDmjTpk167bXX8vzeZCpbtqzKly+vr7/+WqGhoVq7dq3Gjh1703G/+OILLViwQMePH9ezzz6rK1euaNSoUbl6PblFEQEAQAH78eCPkqThDYfLbLL/f4qHNBgiSfr9+O83nQoKAAAAAIBRSpUqpY0bN6pXr14KCgrS66+/ro8++ijbJs6dO3dWrVq11L59ew0ePFh9+vTR+PHjczR+mzZttGTJEr3xxhv67LPPVKVKFW3ZskXp6enq3r27GjRooBdeeEGlS5e+ZbHxxhtvqFmzZurevbuCg4Pl4+Ojfv365ep1ms1mLViwQCkpKWrRooUee+wxvffee//4nJy8N38ff86cOdqzZ48aNGigMWPGZJsJ8neTJk3S+++/r8aNG2vTpk1atGiRKlSokKvXk1smG59IAABQYGITY1VpciWlR6Tr+37f66E+D8nBwcGu90y2JMt7srfiU+O187Gdurvq3Xa9HwAAAADAGMnJyYqIiFCNGjXk6upqdJx8MWLECF29elULFy40OkqJlF9/ppgRAQBAAVp4fKHSU9OlWdLI+0cqOTnZ7vd0dXRVr1q9JEm/H/vd7vcDAAAAAAD4O4oIAAAK0Nyjcw257/117pfE8kwAAAAAAKDgORodAACAkiI2MVZrwtcYcu9etXrJ2cFZJ2NP6tilY6rnXc+QHAAAAAAA5MbMmTONjoB8wIwIAAAKyMLjC5VuS1eDig0K/N6lXEqpS0AXSSzPBAAAAAAAChZFBAAABSRzWab+dfobcv/M+y44vsCQ+wMAAAAACgZL8iK/5NefJYoIAAAKwN+XZbq/7v2GZLiv9n0ym8zae36vIq9GGpIBAAAAAGA/Dg4OkqTU1FSDk6C4SExMlCQ5OTnlaRz2iAAAoABkLsvUuFJj1Spfy5AM3h7eaufbThuiNmjh8YV6seWLhuQAAAAAANiHo6Oj3N3dFRMTIycnJ5nN/B467ozNZlNiYqKio6NVpkyZrJLrTlFEAABQADKXZRpUb5CcnJz0wQcfSMr7bxTkVt/afbUhaoOWhCyhiAAAAACAYsZkMqly5cqKiIhQVFSU0XFQDJQpU0Y+Pj55HsdkY8EwAADsKjYxVpU+rKR0W7pOPHdCQeWDDMty4tIJ1fmijpwdnBX7Sqw8nT0NywIAAAAAsA+r1cryTMgzJyenPM+EyMSMCAAA7OzvyzIZWUJIUlD5IAWUDVD4lXCtjVir+2rfZ2geAAAAAED+M5vNcnV1NToGkIVFwgAAsLO/L8skSenp6dq1a5d27dql9PT0As1iMpnUs2ZPSdLSkKUFem8AAAAAAFAyUUQAAGBHsYmxWhO+RpI0qH5GEZGcnKwWLVqoRYsWSk5OLvBMvWr1kpRRRLBCIwAAAAAAsDeKCAAA7KgwLcuUKdg/WK6Orjp9/bSOxhw1Og4AAAAAACjmKCIAALCj+cfmS/prWabCwN3JXcH+wZJYngkAAAAAANgfRQQAAHZyJemKVoevliQNrDfQ4DTZ9ar53+WZQikiAAAAAACAfVFEAABgJ3+e/FMWq0UNKjZQ7Qq1jY6TTc9aGRtWbz61WddTrhucBgAAAAAAFGcUEQAA2Mn8oxnLMg2oO8DgJDeqWa6mapWrJYvVkjVrAwAAAAAAwB4oIgAAsIPrKde1ImyFpMK3LFOmXrUylmdaFrLM4CQAAAAAAKA4czQ6AAAAxdHik4uVmp6q2uVrq753/WznnJyc9NZbb2U9NkqvWr306Y5PtTR0qWw2m0wmk2FZAAAAAABA8UURAQCAHWQuyzSw3sAbPuB3dnbW+PHjDUiVXXu/9nJ3cte5uHM6ePGgGvs0NjoSAAAAAAAohliaCQCAfBafGq9loRnLHRXWZZkkydXRVZ1qdJKkrLwAAAAAAAD5jSICAIB8tixkmZItyQooG6DGlW6cZWC1WnXkyBEdOXJEVqvVgIR/6VUzY5+IpSFLDc0BAAAAAACKL5ZmAgAgn80/9t9lmereuCyTJCUlJalBgwaSpPj4eHl4eBRovr/rUbOHJGnbmW26nnJdpVxKGZYFAAAAAAAUT8yIAAAgHyWmJWrJySWSCveyTJlqlK2hWuVqyWK1aG3EWqPjAAAAAACAYogiAgCAfLQidIUS0hLkW9pXzas0NzpOjnQP7C4pIzsAAAAAAEB+o4gAACAf/XbsN0m3XpapMOpe879FRNgK2Ww2g9MAAAAAAIDihiICAIB8kmJJ0R8n/pAkDag3wOA0ORfsHywns5MirkYo7EqY0XEAAAAAAEAxQxEBAEA+WRW+SnGpcariVUUtq7U0Ok6OeTp7qo1vG0mFZ3mmjRs36vHHH1ezZs1UqVIlOTs7q1y5curYsaN++umnXI93+vRpTZs2TY888ojq1q0rs9ksk8mk7du32yE9AAAAAAD4O0ejAwAAUFzMPzpfkjSg7gCZTUWr6+8e2F3rI9drRdgKPdviWaPj6I8//tC3336roKAgNW3aVGXLltXZs2e1adMmrV+/XitXrtQPP/yQ4/F+++03jRkzxo6JAQAAAADArRStT0kAACikUtNTtejEIknSwHoD//FaJycnjRs3TuPGjZOTk1NBxLutzA2r10WuU2p6qsFppFGjRuns2bM6ceKEli9frl9++UUbN27U8ePHVaVKFf34449avnx5jscLCAjQmDFj9PPPPyskJEQdOnSwY3oAAAAAAPB3zIgAACAfrItYp6vJV1XJo5LaVG/zj9c6Oztr8uTJBZQsZxr7NFZFj4qKTojW1tNbFewfbGieevXq3fR4zZo19cwzz+j111/X2rVr1aNHjxyNd9999+m+++7Lz4gAAAAAACCHmBEBAEA+yFyWqX/d/nIwO9xwPjIyUiaTScHBwUpISNDYsWNVvXp1ubm5qVmzZvrzzz+zrp03b55atGghDw8PVapUSaNHj1ZSUtINY8bHx+vtt99Ww4YN5e7urlKlSqlDhw5auHDhTTMuWbJEo0aNUt26dVWqVCl5eHiocePGmjhxotJS09QtsJskaWXYSknSzJkzZTKZNH78eJ06dUpDhw6Vt7e33Nzc1Lx582yZC5KDQ8b76+zsbMj9AQAAAABA7lBEAACQRxarRQuOL5CUsT/EP0lNTVXnzp01a9YsBQUFqWXLljpw4IDuv/9+rV69WlOmTNHQoUPl6Oiobt26KT09XVOnTtVjjz2WbZyLFy/qnnvu0VtvvaUrV66oa9euuueee7Rnzx7df//9mjRp0g33fvTRRzVv3jyVLl1aPXr0ULt27XT69Gm99tpr6tWrl7r4dZEkrQjLvmF1ZGSk7r77bm3ZskVt27ZV06ZNtWfPHvXr108rV67My1uXa6dPn9b06dMlKcezIQAAAAAAgLEoIgAAyKMNkRsUmxSr8m7l1cH/n/ce2LZtm5ydnXX58mWtXbtWixcv1nfffaf09HQ9/fTTevfdd7V27Vpt3bpVCxYs0MGDB1WxYkX9/PPPCg8Pzxpn5MiROnr0qF555RVFRERo0aJFWrVqlQ4ePKjAwEC9/vrrOnjwYLZ7f/XVV7pw4YK2b9+uuXPnavny5YqKitK9996rtWvX6vru65Kkvef3KjohOut5s2bN0gMPPKCwsDAtWLBAW7du1SeffCKr1ap33333htfo7+8vk8mUq6/IyMhbvl8jRozQQw89pM6dO6tmzZo6deqU3n33XbVt2zan/4gAAAAAAICB2CMCAIA8mnd0niSpX51+cjT/839aHRwc9Pnnn6tx48ZZxx5++GG98sorCg0N1Ztvvql27dplnatSpYqGDRumKVOmaOPGjQoICND+/fu1bNkytW7dWpMmTZLJZMq6PiAgQB999JH69eunb7/9Vp999lnWuX79+t2Qx8vLS1OmTNHixYu1fsV6NenWRPsv7NeqsFU3jOno+Ndre/bZZzVhwgRt375dqamp2ZZJGjhwoC5dupSDd+4vnp6eNz0eFhamWbNmZX1vNps1YcIEjRs3LlfjAwAAAAAA41BEAACQBxarRb8d+02S9ED9B257vb+/vwIDA7MdM5vN8vPzU0xMjLp27XrDczKvP3/+vCRp1aqMkqBv377ZSohMmTMFdu3adcO5kJAQLV26VKGhoUpISJDVapXNZss61+vpXtp/Yb9WhK1QJ3WSJAUHB8vJySnbOI6OjgoICNCePXsUGxurypUrZ5378MMPb/s+5NTw4cM1fPhwpaamKjIyUj/88IPeeecdLV68WMuWLVPZsmXz7V4AAAAAAMA+KCIAAMiDtRFrdSnxkrzdvdWxRsfbXl+1atWbHvfw8Ljl+cxzKSkpkpS1jNGrr76qV1999Zb3+vusBJvNpnHjxmnKlClZxcP/iouLU/fA7np/y/taGbZSHctnvJ5q1ard9PrMWQyZuezJ2dlZQUFBevfdd1W+fHmNHTtWb775pqZOnWr3ewMAAAAAgLyhiAAAIA/mHJ4jKWOT6tstyyTppjMYcnNektLT0yVJ7dq1U0BAwC2vq1ChQtbjX3/9VR9//LGqVaumTz75RK1atZK3t7ecnJyUmpoqFxcX2Ww2ta7eWu5O7rqYcFGnnU7nONPfjRs3LtdLM3344YfZ8v6T4cOHa+zYsVq0aBFFBAAAAAAARQBFBAAAdyjFkqIFxxdIkh5s8GCB3TdzhsLAgQM1evToHD1nwYKMnF9++aXuvffebOf+vgm2i6OLOvp31JKQJTocffiO8s2fP19RUVG5es748eNzXESUK1dOZrNZMTExdxIPAAAAAAAUMLPRAQAAKKpWhq3U1eSrquxZWW192xbYfbt06SJJWrhwYY6fc+XKFUlS9erVbzg3d+7cbN93D+wuSXdcRERGRspms+Xqy9/fP8fjb9q0SVar9Ya9NgAAAAAAQOFEEQEAwB369civkqRB9QbJweyQ4+c5OjrqmWee0TPPPCNHx9xPTmzZsqU6d+6sdevWacyYMYqPj8923mq1auXKldq8eXPWsaCgIEnS119/nW2PiE2bNmny5MnZnt+9ZkYRcTL2ZK6z5Zfx48frwoULNxzfvXu3Hn/8cUnSyJEjs507e/as6tSpozp16hRIRgAAAAAAkDMszQQAwB1ISkvSohOLJOV+WSYXFxd98cUXebr/7Nmz1a1bN33yySf64Ycf1KRJE3l7e+vs2bM6ceKEYmJiNGXKFLVtmzFTY/To0Zo5c6amTZum9evXq1GjRjp79qw2b96sl156SR9++GHW2LXK1ZJ/GX9FWiPzlDEvJkyYoIkTJ6pZs2by9/dXamqqIiIitH//fknS4MGD9cILL2R7Tlpamk6cOHHT8c6fP6/7778/6/ujR49Kkh577LGsTbd79+6tN954ww6vBgAAAACAko0iAgCAO7A0ZKniU+PlW9pXLau1LPD7V6pUSdu3b9dXX32lX3/9Vbt27VJqaqoqV66spk2bqm/fvho8eHDW9UFBQdq1a5deffVV7dixQ3/88Ydq166t6dOn6/HHH89WRJhMJnUL6Kav131d4K8r09SpU7Vu3Trt379fhw8fVlpamry9vdW3b1+NGDFC/fr1y9V4KSkp2rFjxw3Hjxw5kvWYmRQAAAAAANiHyfb39RkAAECODJ43WPOOztO4VuM0udvk2z/hb2w2my5duiRJqlChgkwmkz0i5snvx37XgLkDVLt8bR1/7rjRcQAAAAAAQBHGHhEAAORSfGq8Fp9cLCn3yzJJUmJioipWrKiKFSsqMTExv+Pli841OsvB5KATsScUdTXK6DgAAAAAAKAIo4gAACCX/jzxp5IsSQosG6hmlZsZHccuSruWzlpyakXYCoPTAAAAAACAoowiAgCAXPr1yK+SMmZDFMZllfJL98DukqSVYSsNTgIAAAAAAIoyiggAAHLhctJlLQtdJkl6oP4DBqexr26B3SRJq8NXy2K1GJwGAAAAAAAUVRQRAADkwvyj85WanqpGlRqpYaWGRsexq+ZVmqucWzldS7mmnWd3Gh0HAAAAAAAUURQRAADkwk8Hf5IkDWs4zOAk9udgdlCXgC6SpBWh7BMBAAAAAADuDEUEAAA5FHU1SptObZJJJg1pMMToOAUic58INqwGAAAAAAB3ytHoAAAAFBU/H/pZktTBv4Oql65+x+M4OjrqkUceyXpcmGXuE7Hr3C5dTrqscm7lDE4EAAAAAACKGmZEAACQAzabTT8dyliWaXjD4Xkay8XFRTNnztTMmTPl4uKSH/HsplqpaqrnXU9Wm1VrwtcYHQcAAAAAABRBFBEAAOTAgYsHdDTmqFwcXDSg3gCj4xQolmcCAAAAAAB5QREBAEAOZG5SfW/QvSrjWiZPY9lsNiUkJCghIUE2my0f0tnX34uIopAXAAAAAAAULhQRAADcRro1Xb8c/kWSNLxR3pZlkqTExER5enrK09NTiYmJeR7P3tr7tZero6vOXD+jY5eOGR0HAAAAAAAUMRQRAADcxvrI9ToXd05lXcuqZ82eRscpcG5Obmrv116StDJspcFpAAAAAABAUUMRAQDAbcw+NFuSNKjeILk4Fu7Npe2lW0A3SewTAQAAAAAAco8iAgCAf5CUlqT5R+dLyp9lmYqq7jUz9onYELlByZZkg9MAAAAAAICihCICAIB/8OfJPxWXGiff0r5q49vG6DiGqe9dX1W9qirJkqRNUZuMjgMAAAAAAIoQiggAAP5B5rJMwxoOk9lUcv+zaTKZ1C2Q5ZkAAAAAAEDuldxPVAAAuI3YxFgtDVkqqWQvy5Qps4hgw2oAAAAAAJAbjkYHAACgsJp3dJ4sVoua+DRRPe96+Taug4ODBg4cmPW4qOga0FUmmXQo+pDOxZ1TFa8qRkcCAAAAAABFADMiAAC4hZ8O/iRJGt4wf2dDuLq6at68eZo3b55cXV3zdWx7Ku9eXs2rNJfErAgAAAAAAJBzFBEAANxExJUIbTm9RSaZ9GCDB42OU2h0D+wuiX0iAAAAAABAzlFEAABwEz8f+lmS1KlGJ1UtVdXgNIVH95oZRcSqsFVKt6YbnAYAAAAAABQFFBEAAPwPm82mnw79d1kmO2xSnZCQIJPJJJPJpISEhHwf357uqXqPvJy9FJsUq30X9hkdBwAAAAAAFAEUEQAA/I+95/fq+KXjcnV0Vf+6/Y2OU6g4OTipc0BnSdKKUJZnAgAAAAAAt0cRAQDA/5h9aLYk6b7a96mUSymD0xQ+7BMBAAAAAABygyICAIC/Sbem65fDv0iShjfM/2WZioPMImLbmW26nnLd4DQAAAAAAKCwo4gAAOBv1kas1YX4CyrnVi5rY2ZkV6NsDdUqV0sWq0VrI9YaHQcAAAAAABRyFBEAAPxN5ibVD9R/QM4OzganKby6BXaTJK0MW2lwEgAAAAAAUNhRRAAA8F+JaYn6/djvkqRhDYcZnKZwY58IAAAAAACQU45GBwAAoLD448Qfik+Nl38Zf7Wu3tpu93FwcFCvXr2yHhdFHWt0lJPZSeFXwhV6OVQ1y9U0OhIAAAAAACikmBEBAMB//XQwY1mm4Q2Hy2Qy2e0+rq6uWrJkiZYsWSJXV1e73ceePJ091ca3jSRpRSizIgAAAAAAwK1RRAAAICkmISZrmaFhjViWKSdYngkAAAAAAOQERQQAAJLmHpkri9WiuyrfpToV6hgdp0jI3LB6XeQ6paanGpwGAAAAAAAUVhQRAABI+ulQxrJMBbFJdUJCgjw8POTh4aGEhAS7389emvg0kbe7t+JT47Xt9Daj4wAAAAAAgEKKIgIAUOKFXQ7T9jPbZTaZ9WCDBwvknomJiUpMTCyQe9mL2WTOmhXB8kwAAAAAAOBWKCIAACXe7EOzJUldArqosldlg9MULT1q9pAkLQtdZnASAAAAAABQWFFEAABKNJvNllVEFMSyTMVN98DuMsmk/Rf26+z1s0bHAQAAAAAAhRBFBACgRNt9brdOxp6Um6Ob7q9zv9FxihxvD2+1qNpCkrQ8dLnBaQAAAAAAQGFEEQEAKNF+OpixSXW/Ov3k5eJlcJqiqVetXpKkpaFLDU4CAAAAAAAKI4oIAECJZbFaNOfIHEksy5QXmUXEqrBVSk1PNTgNAAAAAAAobByNDgAAgFFWh69WdEK0KrhXULfAbgV2X7PZrA4dOmQ9LuqaVW6mih4VFZ0QrS2ntqhjjY5GRwIAAAAAAIVI0f/0AwCAO5S5SfUD9R+Qk4NTgd3Xzc1N69ev1/r16+Xm5lZg97UXs8msnjV7SpKWhrA8EwAAAAAAyI4iAgBQIsWnxuv3Y79LkoY3Gm5wmqKPfSIAAAAAAMCtUEQAAEqkRccXKTEtUYFlA3VP1XuMjlPkdQ3oKgeTg47GHFXk1Uij4wAAAAAAgEKEIgIAUCJlLss0rOEwmUymAr13QkKCvL295e3trYSEhAK9t72UdSur1tVbS5KWhSwzOA0AAAAAAChMKCIAACVOdEK0VoatlCQNazTMkAyXLl3SpUuXDLm3vWQuz7QslCICAAAAAAD8hSICAFDi/Hr4V6Xb0nV3lbsVVD7I6DjFRmYRsSZijZItyQanAQAAAAAAhQVFBACgxPnp0E+S2KQ6vzWs2FBVvaoqMS1RG6M2Gh0HAAAAAAAUEhQRAIASJSQ2RDvP7pSDyUEP1H/A6DjFislkUs+aPSVJS0OWGpwGAAAAAAAUFhQRAIASJXOT6q6BXVXJs5LBaYqfzOWZKCIAAAAAAEAmiggAQIlhs9n008H/LsvUkGWZ7KFzQGc5mZ0UcjlEIbEhRscBAAAAAACFAEUEAKDE2HF2h8KuhMnDyUP96vQzLIfZbFbz5s3VvHlzmc3F6z/FpVxKqZ1fO0nSstBlBqcBAAAAAACFQfH69AMAgH8w+2DGskz96vSTh7OHYTnc3Ny0a9cu7dq1S25uboblsJdeNVmeCQAAAAAA/IUiAgBQIqSlp2nOkTmSpOGNWJbJnjL3iVgfuV4JqQkGpwEAAAAAAEajiAAAlAirwlfpUuIlVfSoqC4BXYyOU6zVqVBH/mX8lZKeonWR64yOAwAAAAAADEYRAQAoETI3qX6w/oNyNDsamiUxMVH+/v7y9/dXYmKioVnswWQysTwTAAAAAADIQhEBACj24lLitPD4QkmFY1kmm82mqKgoRUVFyWazGR3HLjKXZ1oasrTYvkYAAAAAAJAzFBEAgGJv4fGFSrIkqVa5WmpepbnRcUqEjjU6ysXBRVHXonTs0jGj4wAAAAAAAANRRAAAir2fDmUsyzS80XCZTCaD05QM7k7u6lijoySWZwIAAAAAoKSjiAAAFGsX4i9odfhqSdLQhkMNTlOysE8EAAAAAACQKCIAAMXcnMNzZLVZ1bJaS9UsV9PoOCVKz1o9JUmbTm3S9ZTrBqcBAAAAAABGoYgAABRrPx3877JMDY3fpLqkqVmupoLKB8litWTNSgEAAAAAACUPRQQAoNg6fum49pzfIweTgwbXH2x0nCwmk0n16tVTvXr1iv2eFZnLMy0LWWZwEgAAAAAAYBSKCABAsTX74GxJUo+aPeTt4W1wmr+4u7vryJEjOnLkiNzd3Y2OY1e9av13n4jQpbLZbAanAQAAAAAARqCIAAAUSzabTbMPZRQRwxuxLJNR2vu1l7uTu87FndPBiweNjgMAAAAAAAxAEQEAKJa2ndmmiKsR8nT21H217zM6Tonl4uiiLgFdJElLQ5YanAYAAAAAABiBIgIAUCxlblLdv25/uTsVruWPEhMTVb9+fdWvX1+JiYlGx7G7njV7SspYngkAAAAAAJQ8jkYHAAAgv6Wmp2rukbmSpGENhxmc5kY2m01Hjx7NelzcZRYRW09v1ZWkKyrrVtbgRAAAAAAAoCAxIwIAUOysCF2h2KRY+Xj6qFONTkbHKfH8yvipvnd9WW1WrQxbaXQcAAAAAABQwCgiAADFTuYm1UMaDJGjmcl/hUGvWr0ksTwTAAAAAAAlEUUEAKBYuZ5yXYtOLJJUOJdlKqkyi4hlIctktVkNTgMAAAAAAAoSRQQAoFj5/djvSrYkq06FOmpWuZnRcfBfbaq3kZezl2ISY7Tn3B6j4wAAAAAAgAJEEQEAKFYyl2Ua1nCYTCaTwWmQycnBSd0Cu0mSloawPBMAAAAAACUJRQQAoNg4F3dOa8LXSJKGNhxqcJpbM5lM8vPzk5+fX4kqS9gnAgAAAACAkokdPAEAxcacw3Nkk01tqrdRQNkAo+Pckru7uyIjI42OUeB61OwhSdp1dpeiE6JV0aOiwYkAAAAAAEBBYEYEAKDY+OngT5LYpLqwquJVRU19msomm1aErjA6DgAAAAAAKCAUEQCAYuFozFHtu7BPjmZHDa4/2Og4uAWWZwIAAAAAoOShiAAAFAuzD2ZsUt2zZk+Vdy9vcJp/lpSUpLvvvlt33323kpKSjI5ToDKLiBWhK2SxWgxOAwAAAAAACgJ7RAAAijyrzarZhzKKiOGNhhuc5vasVqt2796d9bgkuafqPSrnVk6Xky5rx5kdauPbxuhIAAAAAADAzpgRAQAo8rac2qKoa1HycvZSn6A+RsfBP3AwO6h7YHdJ0rLQZQanAQAAAAAABYEiAgBQ5GXOhhhQb4DcnNwMToPbydonIoR9IgAAAAAAKAkoIgAARVpqeqrmHpkrSRresPAvywSpe2B3mWTSvgv7dC7unNFxAAAAAACAnVFEAACKtGUhy3Ql+YqqeFVRsH+w0XGQA94e3mpRtYUkaXnocoPTAAAAAAAAe6OIAAAUaT8d+kmSNKTBEDmYHQxOg5xieSYAAAAAAEoOiggAQJF1Lfma/jzxpyRpeKOitSxThQoVVKFCBaNjGKZnzZ6SpJVhK5WWnmZwGgAAAAAAYE8UEQCAIuu3Y78pJT1F9bzrqXGlxkbHyTEPDw/FxMQoJiZGHh4eRscxxF1V7lJ5t/KKS43TzrM7jY4DAAAAAADsiCICAFBk/XQwY1mm4Q2Hy2QyGZwGuWE2mdU5oLMkaVX4KoPTAAAAAAAAe6KIAAAUSWevn9X6yPWSpKENhxobBnekW0A3SRnLMwEAAAAAgOKLIgIAUCTNPTJXNtnUunpr+ZXxMzpOriQlJSk4OFjBwcFKSkoyOo5hugZ2lSTtPLtT15KvGZwGAAAAAADYC0UEAKBImnNkjiRpSIMhBifJPavVqg0bNmjDhg2yWq1GxzGMb2lf1S5fW+m2dK2LXGd0HAAAAAAAYCcUEQCAIifscph2nt0ps8msQfUGGR0HedA1IGNWBMszAQAAAABQfFFEAACKnDmHM2ZDdK7RWZU8KxmcBnmRuTwTG1YDAAAAAFB8UUQAAIqcXw7/Ikl6sMGDBidBXgX7B8vR7KjQy6GKuBJhdBwAAAAAAGAHFBEAgCLl0MVDOhJzRM4Ozupft7/RcZBHpVxKqWW1lpKYFQEAAAAAQHFFEQEAKFIyl2XqWbOnyriWMTYM8kXmPhEUEQAAAAAAFE8UEQCAIsNms2nOkYwioqgvy+Tu7i53d3ejYxQK3QK7SZLWhK9RujXd4DQAAAAAACC/UUQAAIqMnWd3KvxKuNyd3NUnqI/Rce6Yh4eHEhISlJCQIA8PD6PjGK55leYq7VJaV5KvaM/5PUbHAQAAAAAA+YwiAgBQZGRuUt23dl95OPMBfnHhaHZU54DOkqSVYSsNTgMAAAAAAPIbRQQAoEhIt6Zr7pG5kor+sky4EftEAAAAAABQfFFEAACKhE2nNul8/HmVcS2j7oHdjY6TJ8nJyerdu7d69+6t5ORko+MUCplFxLbT2xSXEmdwGgAAAAAAkJ8oIgAARcL8o/MlSffXuV8uji4Gp8mb9PR0LV26VEuXLlV6OpszS1JguUAFlA1QmjVNG6I2GB0HAAAAAADkI4oIAEChZ7VZ9dux3yRJA+sNNDgN7CVreaYwlmcCAAAAAKA4oYgAABR6W09v1YX4CyrtUlqda3Q2Og7spFtgN0nSynA2rAYAAAAAoDihiAAAFHqZyzLdV/u+Ir8sE26tU41OMpvMOn7puE5fO210HAAAAAAAkE8oIgAAhRrLMpUcZVzL6O4qd0uSVoWzPBMAAAAAAMUFRQQAoFDbeXanzlw/I09nz6yle1B8Zf4zpogAAAAAAKD4oIgAABRqmcsy9QnqI1dHV4PTwN4yN6xeHb5aVpvV4DQAAAAAACA/UEQAAAotm82WVUQMqjfI4DT5x8PDQzabTTabTR4eHkbHKVTuqXaPPJw8dCnxkg5ePGh0HAAAAAAAkA8oIgAAhdae83sUdS1KHk4e6lGzh9FxUACcHZwV7B8sSVoVxvJMAAAAAAAUBxQRAIBCK3M2RO+g3nJzcjM4DQpKl4AukqTVEasNTgIAAAAAAPIDRQQAoFD6+7JMA+sONDhN/kpOTtagQYM0aNAgJScnGx2n0MncJ2Jj1EYlW3h/AAAAAAAo6igiAACF0oGLBxR2JUxujm7qWaun0XHyVXp6uubPn6/58+crPT3d6DiFTj3veqrsWVnJlmRtObXF6DgAAAAAACCPKCIAAIXSb0d/kyT1rNVTns6eBqdBQTKZTH8tzxTO8kwAAAAAABR1FBEAgEJp0YlFkqT769xvcBIYIXN5plXhbFgNAAAAAEBRRxEBACh0Iq9G6lD0ITmYHNSrVi+j48AAmTMi9p7fq9jEWIPTAAAAAACAvKCIAAAUOn+e+FOS1Na3rcq5lTM4DYxQ2auy6nvXl002rY1Ya3QcAAAAAACQBxQRAIBC54+Tf0iS7qt9n8FJYCSWZwIAAAAAoHigiAAAFCrXkq9pfeR6SVKfoD7GhoGh2LAaAAAAAIDigSICAFCoLA9dLovVoroV6qpW+VpGx7ELd3d3xcfHKz4+Xu7u7kbHKbQ6+HeQk9lJEVcjFHY5zOg4AAAAAADgDlFEAAAKlZKwLJPJZJKHh4c8PDxkMpmMjlNoeTp7qlX1VpKYFQEAAAAAQFFGEQEAKDTS0tO0NGSpJJZlQoYuNTKWZ2KfCAAAAAAAii6KCABAobH51GZdTb6qCu4V1LJaS6Pj2E1KSopGjBihESNGKCUlxeg4hVrXwIwNq9dGrFW6Nd3gNAAAAAAA4E5QRAAACo0/TmQsy3Rv0L1yMDsYnMZ+LBaLZs2apVmzZslisRgdp1BrXqW5SruU1pXkK9p7fq/RcQAAAAAAwB2giAAAFAo2m01/nvxTknRfUPHdHwK542h2VMcaHSWxPBMAAAAAAEUVRQQAoFA4dumYwq6EycXBJWs5HkCSugZk/HmgiAAAAAAAoGiiiAAAFAqZyzJ1qtFJns6eBqdBYdIlIGPD6q2ntyohNcHgNAAAAAAAILcoIgAAhUJmEXFfbZZlQna1ytWSb2lfpaanatOpTUbHAQAAAAAAuUQRAQAwXGxirHac3SFJ6l2rt8FpUNiYTCZ1qZExK2J1+GqD0wAAAAAAgNyiiAAAGG51+GpZbVbV966v6qWrGx0HhVDmviHsEwEAAAAAQNHjaHQAAABWhK2QJPWo2cPgJAXD3d1d0dHRWY9xe51rdJYkHbx4UBfjL6qSZyWDEwEAAAAAgJxiRgQAwFA2m03LQ5dLKjlFhMlkkre3t7y9vWUymYyOUyR4e3iriU8TSdKaiDXGhgEAAAAAALlCEQEAMNSh6EM6H39e7k7uauvb1ug4KMS6BrA8EwAAAAAARRFFBADAUJmzITr6d5Sro6vBaQpGSkqKnn32WT377LNKSUkxOk6RkVlErA5fLZvNZnAaAAAAAACQUxQRAABDlbRlmSTJYrFo2rRpmjZtmiwWi9Fxioy2vm3l4uCiM9fP6ETsCaPjAAAAAACAHKKIAAAYJi4lTptPbZZUsooI3Bk3J7es5btWhbE8EwAAAAAARQVFBADAMOsi1ynNmqaAsgGqWa6m0XFQBHQJ6CJJWh2x2uAkAAAAAAAgpygiAACGyVqWKZDZEMiZzH0i1kWsU1p6msFpAAAAAABATlBEAAAMYbPZtCx0mSSWZULONa3cVOXcyikuNU47zu4wOg4AAAAAAMgBiggAgCFCLoco8mqknMxO6lijo9FxUESYTWZ1C+wmSVoWsszgNAAAAAAAICcoIgAAhshclqmdXzt5OnsanAZFSa+avSRJS0KWGJwEAAAAAADkhKPRAQAAJdOKsBWSSub+EG5uboqIiMh6jNzpUbOHTDLpwMUDOnv9rKqWqmp0JAAAAAAA8A8oIgAABS7Zkqx1Eesklcz9Icxms/z9/Y2OUWR5e3jrnmr3aPuZ7VoaslSP3/W40ZFQAiSmWhQTl6KYuBRdSUxTQopFCamWjP9NSVdiqkVWm2SSZDabZJIkk+RkNsvdxUEezo7ycHGUp4uD3J0dVd7TWT6lXFXOw1kmk8ngVwcAAAAA9kURAQAocFtObVGSJUmVPSurQcUGRsdBEdSrZi9tP7NdS0KWUEQgX6SlW3XqcqLCYxIUHhOv8JgERcQmKPp6smLiUpSQmm6X+zo7mFWxlIsqlXJV5dKu8i3nnvFV3l1+5T3kU8pVDmaKCgAAAABFG0UEAKDArQ5fLUnqEtClRP4mcGpqql577TVJ0nvvvSdnZ2eDExU9vYN66831b2p1+GqlWFLk4uhidCQUIZZ0q05ejNeBM1e1/9RVHThzVaHR8bJYbf/4PFcnsyp6uaqsh7O8XBzl7uwgDxdHefx3loPZZJJNNtlsks1mk9WWca+E1IwZE/Ep6UpMsSg+xaJL8Sm6FJ+q1HSrzlxJ0pkrSTe9p7ODWTUqeKhOZS/V9vFSXZ9Squ3jpcqlXUvk/38CAAAAKJpMNpvtn//GBQBAPrv7m7u1+9xuzeo3Sw83ftjoOAUuISFBnp4ZG3THx8fLw8PD4ERFj81mU9WPq+p8/HmtHL5SXQO7Gh0JhViqxap9p65oS1istofF6uDZq0pOs95wnZuTgwK8PVSjgocCvD0VUMFDVcq4ydvLRd5eLvJwdsjXD/9TLVZFxyXr4vUUXbyerHNXk3TqcqKiYhN16nKizlxJVFr6zX9UL+3mpEbVSqtp9TJq/N+vCp4UcgAAAAAKJ2ZEAAAK1OWky9pzbo8kqXONzganQVFlMpnUs2ZPzdg/Q0tDllJEIBubzaYTF+O04USMtoTFalfEZSWlZV9aycvFUY2ql1bjahkf4jesWrrAZxk4O5pVray7qpV1v+n5dKtN564mKSQ6TsfOx+nEhTgdv3BdYTEJupaUpk0hl7Qp5FLW9VXLuKmJbxk1+e9ralSttFydHArq5QAAAADALTEjAgBQoH4/9rsGzB2guhXq6uizR42OYwhmROSPzD9LtcrV0snnTxodBwazWm3ad/qKVhy5qBVHLigqNjHb+QqezmoVWEFtAsuruX85BVTwkLmI7r2QYknXiQtxOnDmWtbSUmEx8frfn+qdHc1q5ltGrQIqqFVgeTWuXloujhQTAAAAAAoeMyIAAAXq7/tDAHnRJaCLnMxOCrkcopDYENUqX8voSChgVqtNuyIv648D57Ty6EXFxKVknXN2NKt1YHm1q+WtNjXLq3Ylr2Kzp4KLo4MaVSujRtXK6KGWfpKk68lpOnzmmvadvqoDp69q76mruhSfou3hl7U9/LKmrM7Y4+Ju/3LqEOStDkHeqlnRs9i8JwAAAAAKN2ZEAAAKVNDUIIVcDtGiBxfpvtr3GR3HEMyIyD+df+istRFr9Un3T/RCyxeMjoMCEhodpwX7zmrhvnM6e/WvTZ69XBzVqW5Fdavnow61veXpUnJ/58ZmsyksJkHbw2O1LTxWO8JjdSk+Nds1Vcu4qf1/S4l2tSrIowS/XwAAAADsiyICAFBgoq5Gyf9Tf5lNZl1+5bJKu5Y2OpIhKCLyz8fbPtZLK19S14CuWvnQSqPjwI6i45L1x/5zWrj/rA6fvZ513MvFUT0a+OjexlXUKqC8nB3NBqYsvGw2m0Kj47Ux5JI2nIzR9vBYpVr+2rDb1cms4KCK6tWosjrVqViiSxwAAAAA+Y8iAgBQYGbsm6FH/3hULau11LZHtxkdxzAUEfnn+KXjqvtFXTk7OCv2lVh5OnsaHQn5KMWSrhVHLmr+njPaHBIj639/anU0mxRcu6Lub1pVnetWZEPmO5CUmq7tEbHacCJGa49H69Tlv/bUcHY0q0OQt+5tVFnd6vnIzZn3FwAAAEDe8KtOAIACk7U/RI2SvT+Em5ubDh8+nPUYd652+doKKBug8CvhWhO+Rn3r9DU6EvJBaHScftl5Wr/vPaMriWlZx5v5ltH9Tauqd6MqKufhbGDCos/N2UEda1dUx9oV9Vafejp6/rqWHjqvpYcuKOJSglYdvahVRy/K08VRvRr6aECzampRoxx7SgAAAAC4I8yIAAAUCJvNJp+PfBSdEK31j6xXB/8ORkdCMTF62WhN3TlVjzZ9VN/e963RcXCHktPStfjgec3ZeUq7o65kHa9c2lWD7qqmAXdVk195Zg/Zm81m04mLcVp68LwW7j+XbaZE9XJu6t+0mh64u7qqlKFEBQAAAJBzFBEAgAJx6OIhNfqqkdyd3HX5lctycXQxOhKKiTXha9Tlxy6q4F5B5186L0czEz6LktDoeP2845Tm7zmt68kWSZKD2aROdSpqSIvq6hBUUQ5mfgvfCDabTbsir+i3PWe05NB5xaf89c+nR30fjWjjr+Z+ZZklAQAAAOC2KCIAAAViyrYpGrtyrHrU7KFlw5YZHcdQqampmjhxoiTp//7v/+TszBIzeWGxWlTpw0q6nHRZ6x5Zp2D/YKMj4TYy936YvT1KOyIuZx2vVtZNQ1r4auBd1VSplKuBCfG/klLTtfLoBc3ZeVrbwmOzjjeoWkojW9fQvY0ry8WRvSQAAAAA3BxFBACgQPT+ubeWhizVh10/1EutXzI6jqHYrDr/jVo0St/v/17Pt3hen/X8zOg4uIVTsYn6eecpzdt9WrEJqZIks0nqXLeSht3jq/a1vGVm9kOhd/zCdc3cEqkF+84qxWKVJHl7ueipDoEado8vm4cDAAAAuAFFBADA7lLTU1Xu/XJKSEvQvif3qYlPE6MjGYoiIv8tPrlYfX7po6peVXVqzCmZTWajI+G/bDabNode0vdbIrXuRLQyf/KsVMpFD97ty34DRdjlhFT9svOUftwWpQvXkyVlFBJPdwjUUAoJAAAAAH9DEQEAsLtNUZvUfmZ7VXCvoIvjLpb4D4kpIvJfsiVZ3pO9FZ8arx2P7VCLqi2MjlTiJaWm6/d9ZzRzS6RCouOzjrcP8tawe3zVuU5FOTqU7P8vKC5SLVb9tveMPl8bqrNXkyRJFb1c9ExwoB5sQSEBAAAAQGI3RwCA3a0OXy1J6lyjc4kvIWAfro6u6l2rt3498qt+O/obRYSBzl5N0g/bIjVn52ldS0qTJHk4O2hQ8+p6pLW/alSgeCtunB3NGtLCVwOaVdP8PWf0xbqMQmL8n0c1Y0ukXutdV93qVWJTawAAAKAEY0YEAMDu2s5oqy2nt+ibPt/osWaPGR3HcMyIsI95R+Zp8PzBqlmupk4+d5IPPQvYnqjL+nZThFYcuSDrf3+69C3nrkda+2tQ82oq5epkbEAUmBRLuubtPqOpa0N08XqKJKldrQp6q0891azoZXA6AAAAAEagiAAA2NX1lOsq9345pdvSFfFChPzL+BsdyXAUEfYRnxqvCh9UUEp6ig4+dVANKzU0OlKxZ7XatPZ4tL7aEKbdUVeyjrcOLK+RbWqoU52KcmDzabvZuHGjfvzxR+3Zs0dnz57VlStX5OnpqcaNG+vRRx/V8OHD72jclJQUTZ06VXPmzNHJkydltVpVtWpVtW3bVm+//baqVq2ao3ESUiyatj5U32yMUGq6VY5mkx5u5a8XutRSaTeKKQAAAKAkoYgAANhV5ibCgWUDFTo61Og4hQJFhP30ndNXf5z4Q6+3e13vdHrH6DjFVqrFqkX7z+rrjeFZ+z84O5jVr2kVjWpbQ3V8ShmcsGQYN26cPvroIwUFBalGjRoqW7aszp49q61btyo9PV0PPfSQfvjhh1yNGR0drS5duujQoUPy8fFRq1atJEmhoaE6dOiQNm3apLZt2+ZqzKjYBL275JhWHb0oSarg6ax3+zVQjwaVczUOAAAAgKKLIgIAYFcvLn9Rn+74VE/e9aS+uvcro+MUCunp6dq7d68kqVmzZnJwYCPX/PLLoV809PehCigboNDnQ1meKZ8lp6Vr7u7T+nJ9mM5fS5Ykebk4amhLX41qU0OVSrkanLBkOXr0qMqUKaMqVapkOx4aGqoOHTro3LlzWrZsmXr06JGj8axWq9q0aaPt27frtdde0/jx4+Xo+NeWcuHh4SpVqpQqVKhwR3k3nozRhD+PKCwmQZJ0X+MqmnBffZX1cL6j8QAAAAAUHRQRAAC7ajCtgY7EHNHcgXM1qP4go+OgmEtITVClDyspIS1BW0dtVavqrYyOVCxkFhDT1oXpwvWMAqKil4tGta2hoff4sv9DIfTee+/p9ddf18svv6wPPvggR8+ZMWOGHn30UQ0YMEDz58+3S64US7o+WxOiL9eHyWqTKni66D/9G6prvUp2uR8AAACAwsFsdAAAQPF1Pu68jsQckUkmdazR0eg4KAE8nD10f937JUmzD802OE3Rl5yWrh+2RSp48nq9ueiILlxPVuXSrnqnXwNterWjnuoQmK8lRGRkpEwmk4KDg5WQkKCxY8eqevXqcnNzU7NmzfTnn39mXTtv3jy1aNFCHh4eqlSpkkaPHq2kpKQbxoyPj9fbb7+thg0byt3dXaVKlVKHDh20cOHCm2ZYsmSJRo0apbp166pUqVLy8PBQ48aNNXHiRKWkpNxw/cyZM2UymTR+/HidOnVKQ4cOlbe3t9zc3NS8efNsmQtS5kwrZ+eczzaYPn26JOmll16ySyZJcnF00Mvd62jBM21Uq6KnLsWn6PEfdmvsr/t1LTHNbvcFAAAAYCxmRAAA7Oangz/poQUPqVnlZtrzxB6j4xQaqamp+vTTTyVJL7zwQq4+KMTtLQ9drp6ze6qCewWdG3tOTg78tn5uWa02/XnwnD5YfkJnr2Z8uF+5tKue6VhTg5tXk4ujfZYTi4yMVI0aNdSqVStZrVaFhYWpZcuWio+P18aNG2UymbR8+XIdOnRIr7zyiu6++25VqlRJmzZtUmxsrIYOHarZs/8qoC5evKhOnTrp6NGjqlq1qu666y4lJiZq27ZtSkhI0H/+8x/961//ypbBx8dHCQkJql+/vnx9fXX9+nXt3LlTV65cUadOnbRy5cpsy6nNnDlTI0eO1COPPKJly5bJ1dVVzZo108WLF7Vt2zaZzWYtW7ZM3bp1s8t7djOnT59W+/btFRkZmeM9HeLi4lSmTBl5eHjo6tWr2rFjh/744w9dvnxZvr6+6tu3rxo0aJCvOZPT0vXJ6hB9vTFjdkS1sm6aNqyZGlUrk6/3AQAAAGA8iggAgN2MXDRSM/fP1CutX9H7Xd83Ok6hwWbV9mWxWlT146qKTojWkqFL1KtWL6MjFSnbwmI1cekxHTp7TZLkU8pVz3aybwGRKbOIkKTg4GD9/vvvKlu2rKS/PvCvWbOmLl++rIULF6pdu3aSpHPnzqlp06aKjo5WWFiYAgICJEm9evXSsmXL9Morr+jdd9+Vk1NGKRUeHq5u3bopMjJSe/fuVaNGjbIyLFy4UF27ds3272VcXJyGDh2qxYsXa9asWXr44YezzmXmkqTnn39eH3/8cda+Cp9++qlefPFFtWvXThs3bsz2Wv39/RUVFZWr9yciIkL+/v43HN+2bZumT5+u9PR0nTt3Tps3b5bFYtHbb7+t1157LUdj79ixQy1btlTTpk3VunVrffHFF9nOm0wmjRs3LsfLPOXG3lNXNObX/YqKTZSzg1lv9qmnYff4sscLAAAAUIxQRAAA7MJms8n3E1+duX5GK4evVNfArkZHKjQoIuxv9LLRmrpzqoY2HKrZ/VmiKSdCo+M0adlxrT4WLUnydHHU08GBGtWmhtycC2ZD9cwiwsHBQcePH1fNmjWzzlmtVvn4+CgmJkZvvvmmJkyYkO25Y8eO1ZQpU/T9999rxIgR2r9/f9aH6ps3b77hQ+1FixapX79+ev755/XZZ5/dNltoaKhq1aql/v3767fffss6nllEBAQE6Pjx41llhyRZLBZVrFhR8fHxio+Pzzb7ady4cbp06VKu3p8PP/zwphtF//TTT3rooYeyvjebzZowYYJefvllubi45Gjs5cuXq2fPnnJ0dJTFYtG4ceP07LPPytPTUwsXLtQLL7ygxMREffnll3rqqadylTsnriWl6eV5B7Ty6EVJUr8mVTSxf0O5Ozve5pkAAAAAigJ+sgcA2MXJ2JM6c/2MXBxc1Nb39suCAPlpWMNhmrpzqhYeX6j41Hh5OnsaHanQik+x6NPVJzVjS6TSrTY5mE0a2sJXL3SppQqeOfsQO7/5+/tnKyGkjA/X/fz8FBMTo65dbyw2AwMDJUnnz5+XJK1atUqS1Ldv35v+Zn3mckW7du264VxISIiWLl2q0NBQJSQkyGq1KvN3d0JCQm6aOTg4OFsJIUmOjo4KCAjQnj17FBsbq8qVK2ed+/DDD2/+4u/A8OHDNXz4cKWmpioyMlI//PCD3nnnHS1evFjLli3LmlXyT9LT0yVllCdDhgzR5MmTs8499thjSklJ0XPPPaf33nvPLkVEaTcnTX/oLn27KUKTlh/Xwv3ndOTcdX05/C7VrMi/vwAAAEBRRxEBALCL1eGrJUltfNvIzcnN4DQoaVpUbaGa5Woq9HKo5h2Zp5FNRxodqdCx2WxadviC3v7zqC5cT5YkdalbSf/qWcfwD36rVq160+OZs4dudj7zXOaG0pGRkZKkV199Va+++uot7/X3WQk2m03jxo3TlClTdKtJw3FxcTc9Xq1atZsez5z9dLONrvObs7OzgoKC9O6776p8+fIaO3as3nzzTU2dOvW2z/Xy8sp6PGrUqBvOjxw5Us8//7zOnDmj0NDQG4qi/GAymfR4+wA1rl5Gz/28VyHR8er7+WZ9NqSpOtetlO/3AwAAAFBwKCIAAHaxOiKjiOhco7PBSVASmUwmPdr0Uf17zb/11Z6vKCL+R+SlBL35xxFtPBkjSfIt564JfeurY+2KBifLcLu9AXKyd0Dmb/i3a9cua8+Im/n7Uke//vqrPv74Y1WrVk2ffPKJWrVqJW9vbzk5OSk1NVUuLi63LChyu59Bfi7NdDPDhw/X2LFjtWjRohwVEX/fe8LPz++G8+7u7vL29lZ0dLSio6PtUkRkalGjnJaMbqfnf9mr7eGX9fgPu/V673oa2caffSMAAACAIooiAgCQ7yxWi9ZFrJMkdQnoYnAalFSjmo7Sm+ve1M6zO7X3/F41q9zM6EiGS0u36qv1YZq6LlSpFqucHcx6KjhQzwQHytWpYPaBKCiZMxQGDhyo0aNH5+g5CxYskCR9+eWXuvfee7OdCw8Pz9d88+fPz/Vm1ePHj89xEVGuXDmZzWbFxMTk6HpfX1+VL19esbGxunz58g3nrVarrl69KumvWR725O3loh8fvUdvLjqsX3ae1tuLjyriUoLe6lNPjg5mu98fAAAAQP7ip3gAQL7bc26PrqVcU2mX0rqr8l1Gx0EJVdGjogbUGyBJ+mr3VwanMd6JC3HqP22rPlp1UqkWq9rVqqAVY9prbNegYldCSFKXLhkl6MKFC3P8nCtXrkiSqlevfsO5uXPn5kuuTJGRkbLZbLn6+vushdvZtGmTrFZr1t4ZOdGnTx9J0rp16244t3XrVqWmpsrNzU116tTJ8Zh54eRg1sT7G+q1XnVlMkk/bo/So7N2Ky45rUDuDwAAACD/UEQAAPLdmog1kqRONTrJwVz8PuDMK1dXV61bt07r1q2Tq6ur0XGKtaebPy1Jmn1otq4lXzM4jTGsVpu+2RiuPlM369DZayrt5qRPHmiiH0a1UI0KHkbHs5uWLVuqc+fOWrduncaMGaP4+Phs561Wq1auXKnNmzdnHQsKCpIkff3119mWYNq0aVO2zZsLi/Hjx+vChQs3HN+9e7cef/xxSRl7O/zd2bNnVadOnZuWCS+//LIcHBw0efJk7du3L+t4dHS0XnjhBUkZ+0c4Ozvn58v4R5n7Rnw1/C65OTlow8kYDfxym85cSSywDAAAAADyjiICAJDvMjeqZn+Im3NwcFBwcLCCg4Pl4EBRY0/tfNupnnc9JaYl6seDPxodp8BFX0/WI9/v1HtLjyk13arOdSpq1Zj26te0aolYa3/27Nlq1KiRPvnkE/n5+alz58568MEH1a5dO/n4+Kh79+7avXt31vWjR4+Wh4eHpk2bpgYNGmjIkCFq3769OnTooKeeesrAV3JzEyZMkK+vr1q2bKkHH3xQ/fv3V9OmTXX33XcrNDRUgwcPzioQMqWlpenEiRM6ceLEDePVq1dPU6ZM0eXLl9WqVSt17NhRffr0UZ06dbR37141a9ZM//nPfwrq5WXTvb6P5j7ZShW9XHTiYsbsnuMXrhuSBQAAAEDuUUQAAPJVYlqitpzeIknqGtjV4DQo6Uwmk566K+MD5K92f3XLjYaLo7XHL6rHp5u0KeSSXJ0ylrj59pHmqliq5MzCqVSpkrZv366PP/5YtWrV0q5du7Rw4UKdOXNGTZs21RdffKHhw4dnXR8UFKRdu3apT58+unTpkv744w/Fx8dr+vTphXJGxNSpU9WnTx/FxMRo8eLFWrJkiWJiYtS3b18tWLBAv/76qxwdc7cl3PPPP68VK1aoffv22rdvn1atWqXKlStrwoQJ2rRpk7y8vOz0am6vYbXSWvRcG9Wu5KXouBQN/mqbdkXeuJ8FAAAAgMLHZCtJfyMHANjditAV6jG7h6qXqq6oF6NKxG9d51ZaWpq+/vprSdITTzwhJycngxMVb9eSr6nKx1WUmJao1Q+tVueA4j1TJzktXZOWHdfMrZGSpLqVS2nqkCaqWdG4D5CB/HQtMU2P/bBLuyKvyMXRrM+HNlPXepWMjgUAAADgHzAjAgCQrzKXZeoS0IUS4hZSU1P13HPP6bnnnlNqaqrRcYq90q6lNarJKEnSB1s/MDiNfUXFJqjfF1uySohRbWpo4bOtKSFQrJR2d9KPj96jLnUrKsVi1VM/7dHc3aeNjgUAAADgH1BEAADy1eqIjCKiawDLMqHwGNtqrBxMDloZtlL7L+w3Oo5drD8RrT5TN+v4hThV8HTW9yPv1pt96snFkX1IUPy4Ojnoq+F3adBd1ZRutemV+Qc1bX1oiVp+DQAAAChKKCIAAPkmOiE660PeTjU6GRsG+JsaZWtocP3BkqQPthSvWRE2m01frAvVyJm7dD3Zoma+ZbRkdDt1rF3R6GiAXTk6mPXBwEZ6qkOgJOmD5Sc0adlxyggAAACgEKKIAADkm7URayVJjSo1UiVP1utG4fJy65clSb8e+VURVyIMTpM/4lMseuqnPZq84oRsNmnoPb765YmWqlSCNqRGyWYymfSvnnX0eu+6kqTpG8P12sLDSrdSRgAAAACFCUUEACDfZO0PUaOLwUmAGzWt3FTdArvJarPq420fGx0nz8Jj4tXviy1aceSinB3MmtS/oSbe35ClmFAiPdYuQO8PaCiTSfp5xymN+XW/0tKtRscCAAAA8F8UEQCAfGGz2bQqfJUkqWsg+0OgcHql9SuSpO/2fafzcecNTnPndoTH6v5pWxUaHS+fUq769cmWerCFr9GxAEM9cLevpg5pKicHk/44cE5P/bhHyWnpRscCAAAAIIoIAEA+Cb0cqlPXTsnJ7KR2vu2MjgPcVKcandSqWislWZL0zsZ3jI5zR37fe0bDv9uha0lpaupbRn8+31ZNfcsaHQsoFO5tVEVfP9xcLo5mrTkerZHf71J8isXoWAAAAECJRxEBAMgXmcsyta7eWh7OHganKdxcXFy0ePFiLV68WC4uLkbHKVFMJpMmdZkkSfpm7zcKvRxqcKKcs9ls+njVSY2de0Bp6Tb1blhZvzzeUt5e/BkC/q5j7Yr6YVQLebo4alt4rIZ9u0NXE1ONjgUAAACUaBQRAIB8sTriv/tDBLA/xO04Ojqqd+/e6t27txwdHY2OU+K092uvnjV7ymK16M11bxodJ0dSLOka8+t+fbYmRJL0THCgpg5pKlcn9oMAbuaegPL6+fF7VNbdSQdOX9UD07cr+nqy0bEAAACAEosiAgCQZ+nWdK2NWCtJ6hrA/hAo/CZ2nihJ+uXwL9p/Yb+xYW7jWmKaHvp2pxbuPydHs0kfDGikV3rUkdlsMjoaUKg1qlZGc59spYpeLjpxMU6Dpm/T6cuJRscCAAAASiSKCABAnu05v0dXk6+qtEtp3VXlLqPjFHppaWmaOXOmZs6cqbS0NKPjlEhNfJpoSIMhkqR/rf6XbDabwYlu7uL1ZA2evk07Iy/Ly9VRs0a10OC7qxsdCygyalXy0vynWqt6OTdFxSZq0FfbFBodb3QsAAAAoMShiAAA5Fnm/hAda3SUo5mlhm4nNTVVI0eO1MiRI5WayrrlRnmn4ztyMjtpRdgK/XnyT6Pj3CA8Jl79p23ViYtxqujlonlPtVKbmhWMjgUUOb7l3TXvydaqVdFTF/5b7h0+e83oWAAAAECJQhEBAMizzCKiSw32h0DREVguUONaj5MkjV42WolphWfJlkNnrmnQV9t09mqSalTw0G9Pt1Ydn1JGxwKKLJ/Srvr1yVZqWLW0LiekasjX27Ur8rLRsQAAAIASgyICAJAniWmJ2nJ6iySpayD7Q6Boea3da6peqrqirkVp0uZJRseRJG0NvaQh32xXbEKqGlQtpXlPtVL1cu5GxwKKvHIezvr58XvUokY5xaVY9NB3O7ThZIzRsQAAAIASgSICAJAnm6I2KTU9VdVLVVetcrWMjgPkioezh6Z0nyJJ+mDLBwq9HGponuWHz2vE97sUn2JR68Dy+uXxlqrg6WJoJqA48XJ10g+jWqhjbW8lp1n12KxdWnbovNGxAAAAgGKPIgIAkCdZyzIFdJHJZDI4DZB7/ev2V7fAbkpJT9EzS54xbOPqhfvO6tmf9yk13aqeDXw0Y8Td8nJ1MiQLUJy5Ojlo+kPN1btRZaWl2/Tsz3s1b/dpo2MBAAAAxRpFBAAgT1ZH/FVEAEWRyWTS1J5T5eroqlXhq/T1nq8LPMMvO09pzNz9SrfaNPCuavp8aDO5OjkUeA6gpHB2NOuzB5vqwbury2qTXp5/UN9viTA6FgAAAFBsUUQAAO5YdEK09l/YL0nqXKOzsWGAPAgqH6T/dP6PJOmllS8p/Ep4gd17xuYI/fv3Q7LZpIda+umDAY3kYGZ2EWBvDmaT/tO/oR5rW0OSNOHPo/psTYhhs6IAAACA4owiAgBwx9ZGrJUkNarUSJU8KxmcpuhwcXHR3LlzNXfuXLm4sP5/YTH6ntHq4NdBCWkJGrFwhKw2q93v+cW6UL29+Kgk6Yn2AXq7b32ZKSGAAmMymfRa77oa0yVIkvTxqpOauPQYZQQAAACQzygiAAB3bGXYSklSlxosy5Qbjo6OGjRokAYNGiRHR0ej4+C/zCazvu/7vTydPbXp1CZ9vO1ju93LZrPpo5UnNHnFCUnSi11q6d8967DPCmAAk8mkF7rU0pv31pMkfbMpQv+34JDSrZQRAAAAQH6hiAAA3BGbzablocslST1q9jA4DZA/apStoY+7ZRQQ/7fm/7T73O58v4fNZtO7S45p6tpQSdK/e9bRi12CKCEAg41qW0MfDGwks0n6ZedpvTBnn9LS7T8zCgAAACgJKCIAAHfkUPQhnY8/LzdHN7Xza2d0nCLFYrFo3rx5mjdvniwWi9Fx8D8ea/aYBtQdoDRrmh6Y/4Cup1zPt7GtVpteX3hY323O2BT37b719WSHwHwbH0DeDG5eXZ8PbSYnB5MWHzyvJ3/co+S0dKNjAQAAAEUeRQQA4I5kzoboWKOjXB1dDU5TtKSkpGjw4MEaPHiwUlJSjI6D/2EymfTtfd/Kr7Sfwq+E68nFT+bLevGWdKvGzT+g2TtOyWSSPhjQSA+38s97YAD5qlfDyvrm4eZydTJr7fFoPTJjp64npxkdCwAAACjSKCIAAHdkRdgKSVKPQJZlQvFTxrWM5gycIweTg+YcnqMZ+2bkabxUi1UvzNmv3/eelYPZpE8eaKLBd1fPp7QA8ltw7Yr6YdQ98nJx1I6Iyxr45VaduZJodCwAAACgyKKIAADkWnxqvDZFbZLE/hAovlpWa6n3Or0nSXp+2fM6En3kjsZJTkvX0z/t0ZJD5+XsYNa0Yc3Ut0nV/IwKwA5a1CinOU+2VKVSLjp5MV79vtiqA6evGh0LAAAAKJIoIgAAubYuYp3SrGkKKBugmuVqGh0HsJuX27ysboHdlGRJ0gPzH1BCakKunp+YatFjs3ZrzfFouTia9c0jzdW9vo+d0gLIb/WrlNbCZ9uojo+XLsWn6IGvt2n54QtGxwIAAACKHIoIAECuZe4P0T2wu0wmk8FpUBht375dffv2VYUKFeTq6qqgoCC9/vrrSkzM+dImXbp0kclkkslk0oULN37wl5ycrGeffVYVKlSQh4eH7rvvPkVFRd10rGvXrsnHx0dDhgzJ1eswm8x6t+m70njpyP8d0ROLn7jlfhEjRoyQyWTSzJkzJUlxyWl6ZMZOLfz0NUW9f69OvtdLwbUrymw2q3Tp0vL391efPn30wQcf6OLFi7fM8L/jAihYlUu7af7TrdUhyFvJaVY9PXuPvt0Uni97xwAAAAAlBUUEACDXlodlFBEsy4SbmT17ttq2bas//vhD/v7+6tWrl5KTk/Xee++pdevWiouLu+0YM2fO1Jo1a/6x6HrhhRc0bdo0+fn5qV27dlq8eLF69eql9PT0G6598803lZCQoA8//DDXr8fbwzvjgUn6+dDP+mLXF7d9ztXEVA3/dod2RV6Rk0PGa2jTpo0eeeQRPfzww+rWrZuqVaumNWvW6NVXX5Wvr6/ef/99PtgECilPF0d990hzDbvHVzab9O6SY3p94WGlWqxGRwMAAACKBIoIAECuhF4OVfiVcDmZndTRv6PRcVDInDlzRo899pjS09M1Y8YM7d69W7///rtCQkI0aNAgHThwQK+88so/jhETE6Nx48apW7du8vX1vek158+f14wZM9SzZ0/t3r1by5cv1zvvvKOjR49qwYIF2a49fPiwpk2bpjfeeENVq9753gxlXctKksasGKOtp7fe8rq45DQ9+PV2HThzTeU8nNU+KKPIeOyxxzRz5kzNnDlT8+bN0+bNmxUbG6vPPvtMjo6O+te//qXXXnvtjvMBsC9HB7Pe7ddAr/euK5NJmr3jlIZ/u0OX4lOMjgYAAAAUehQRAIBcyVyWqa1vW3m5eBmcpmhydnbW999/r++//17Ozs5Gx8lXM2fOVHJysrp27aqRI0dmHXdxcdEXX3whd3d3fffdd4qNjb3lGC+++KISEhI0bdq0W15z+PBhWSwWPfzww1mzJkaNGiVJ2r9/f7Zrn3vuOQUGBmrMmDF5eGVSKZdSGlx/sCxWiwbNG6SL8TdfTmna+jAdvxAnby8XzXmipcq63/qfsZubm55//nktWbJEDg4O+s9//qMDBw7kKScA+zGZTHqsXYC+eai5PF0ctTPysu6bulmHz14zOhoAAABQqFFEAAByJbOIYFmmO+fk5KQRI0ZoxIgRcnJyMjpOvtqzZ48kKTg4+IZz3t7eqlevntLS0rR06dKbPn/FihX6+eef9dprrykwMPCW97ly5YokqWzZslnHMh9fvnw569jPP/+sDRs2aOrUqfnyXn/b51vVqVBH5+LO6cHfHpTFask6l5CS8TgmLkVVy7hp3pOtFFQpZ2VdcHBw1v4VU6dOzXNOAPbVpV4lLXy2jQIqeOjctWQN+HKrFu0/a3QsAAAAoNCiiAAA5FiKJUXrItdJoojAzSUkJEjKXhD8Xbly5STppr/1n5iYqKeeekp16tS57fJNmUs2hYSEZB07efKkJMnPz0+SFB8fr5dfflkDBgxQ165dc/lKbs7LxUu/D/5dns6eWh+5Xq+tyVhKKSwmXutPxEiSKng669cnW8q/gkeuxn7wwQclSevWrcuXrADsq2ZFTy14to061vZWisWqF+bs18Slx2RJZ98IAAAA4H9RRAAAcmzzqc1KTEtUZc/KalixodFxiiyLxaIlS5ZoyZIlslgst39CEeLtnbEfQlRU1E3PZx6PjIy84dwbb7yhyMhIffnll7ddsqpJkyaqXLmyPv74Yx0+fFgXL17UK6+8IpPJpJ49e0qS3n77bV29elUff/xxHl7Rjep619WM+2ZIkj7Y+oGmbp2tB6ZvU1JaxibZzwTXVLWy7rket0mTJpKk8PBwpaam5lteAPZT2s1J3z5yt54JzpjB9fXGcD08Yyf7RgAAAAD/w9HoAACAoiNzWabuNbtnrcuP3EtJSdG9994rKeO39h0di89/jjt06KCff/5Zv/zyi95+++1shcL27dt14sQJSVJcXFy25+3du1effvqpHnnkkZsu6/S/XF1dNXnyZD300ENq2PCvUuzpp59Wo0aNdOLECX3yySd66623sm14nZSUJFdX1zv68xsVFXXT540ePzzb96Xc7mwJqAoVKmQ9vnLliipVqnRH4wAoWA5mk17pUUf1q5TWy/MPaGtYrO79bLO+GNZUd/mVMzoeAAAAUCgwIwIAkGNLQzPW9e8e2N3gJCishg0bJl9fX506dUp9+/bVkSNHFBcXp+XLl2vQoEFZpYvZ/NePIOnp6Xr88cdVpkwZffjhh7m615YtWzRmzBg9/fTTmjdvnr744gtJ0vPPPy9fX1+NGzdOkjRnzhz5+/vL3d1dZcuW1euvvy6rNXfLp3h4eOiRRx7J+urVf7AcGpeRGktOTT3lX6NGrsb7XzabLesxRR9Q9PRuVFl/PNdGgd4eunA9WQ9M367vt0Rk+3cbAAAAKKmKz69gAgDsKvxKuI7GHJWDyYEiArfk4eGhxYsX695779Xy5cu1fPnyrHO+vr4aO3asPvjgg2x7SHzyySfau3evvvvuu2yzAnKiVatWatWqVbZjv/32m1atWqXFixfLxcVFe/bs0dChQ9W9e3d9+umn2rBhg9577z1VrFhRo0ePzvG9KlSooJkzZ0qSNoXE6PEfdsun1r2K9RijZGusTOu9pYhcxc/m0qVLWY9vtccGgMKtZkUvLXqurf7120EtPnheE/48qr2nrmpS/4bycOGvXgAAACi5+GkYAJAjf574U5LUzq+dyrrxISlurWHDhjp+/LjmzZun3bt3y2KxqHHjxho6dKjeffddSVL9+vWzrv/zzz9lMpk0a9Ys/fDDD9nGunDhgiSpf//+cnZ21rvvvqu2bdve8t5JSUl66aWX1KdPH/Xu3VuS9NFHH8nT01Nz586Vl5eX+vbtq71792ry5Mm5KiIyrT56Uc/M3qvUdKu61K6t4e3nq8fsLoq4kocWQtL+/fslSbVq1ZKT050t7wTAeJ4ujpo6pKnu8iur95Yc058HzunouWv6cvhdCqrkZXQ8AAAAwBAUEQCAHPnzZEYR0Seoj8FJUBS4ubnp4Ycf1sMPP5zt+OrVqyXphn0gbDabNm7ceMvxtm3bJin7rIGbmThxoi5evKhPPvkk69jx48dVp04deXn99QFgixYttGHDBl2/fl2lSpXKyUuSJP154JzG/LpfFqtNPer76NMhTeTi6KDJXSdr7O9jJUknL53M8Xh/N2fOHElSx44d7+j5AAoPk8mkkW1qqFG10npm9l6FxSSo7+db9E6/Bhp4VzWj4wEAAAAFjj0iAAC3dT3lujZEbZBEEYE7t2HDBu3du1f169dXmzZtso6vX79eNpvtpl9+fn6SpPPnz8tms6lfv363HD8sLEyTJ0/WK6+8ooCAgGznEhMTs32fkJAgKXd7MSSmpuuFOftksdp0f9Oq+nxoU7k4OkiSXmz5ovzL+kuSvtj1hc5eP5vjcaWM92DOnDkymUx6/vnnc/VcAIXXXX7ltGR0O7WrVUFJaekaN++AXpl/QEmp6UZHAwAAAAoURQQA4LZWhK6QxWpRUPkg1Spfy+g4KOT2798vi8WS7djevXs1dOhQmUwmTZ061S73feGFF1S5cmX961//yna8fv36Onr0qPbt2ydJiouL059//ilfX99ssyRu53JCqqw2aUiL6vpoUGM5Ovz1Y5TJZFKb6hnlyvWU6xo4b6BSLCm3HTM5OVmff/65evfurfT0dL3xxhtq0KBBjjMBKPwqeLpo1sgWeqlrkMwmae7uM7p/2haFxcQbHQ0AAAAoMCzNBAC4LZZlyl/Ozs76/PPPsx4XNy+++KKO/n979x0dRdWHcfy7m01vJCQQCBA6SFd6k6IIiIpKk14URRDUV1TsYu8VERERFUFABBEQKVKkd6T3hJpGEtLL7s77R0gg0gIkbMrzOWfPbmZmZ56NjDc7v7n37tlDgwYNCAgIIDQ0lA0bNmA2m/nmm2/yZeihBQsWsGDBAubMmYO7u3uOdc8++yzTpk2jXbt2tG/fnm3btnH8+HEmTJiQq33/vD4s+/XglhV59Z5al+xJYTFn/lnl7uzO+hPreWrRU3x9z9fZ6ydNmsSKFSuAzB4a4eHhbNmyheTkZFxdXfnggw8YPXr0tX50ESkEzGYTI++oRsMQP0b9sp194Qnc9+Vq3nmwLl0bBDs6noiIiIhIvlMhQkRErshmt7Hw4EJAhYi84uzszIgRIxwdI9/069ePqVOnsn37duLi4ggMDOShhx7i2WefpUGDBnl+vLS0NJ588kk6dux4yaGb6tWrx9y5c3n55ZeZP38+QUFBvPfeezz22GNX3K9hGHz4136+XnkYAB83y2WLEBca1mgYn6V+xoQtE2gc3Dh7+Zo1a1izZg0mkwkvLy/8/f1p164dbdq0YeDAgZQqVeraP7yIFCotqgaw8MlWjJq+jfVHYnjyl+1sPBrDK/fUws3ZydHxRERERETyjckwDMPRIUREpOBafWw1rb9vjZ+bH5HPRmbf9S1SlNnsBi/P3cX0jccAeK5TDYa3rZrr97+58k1eXfEqrk6urB6ymkZlG+VXVBEphGx2g8+XHuDL5YcwDKhd1ofxfW8jpKSno6OJiIiIiOQLzREhIiJX9Mf+zGGZOlfrrCJEHrHZbKxYsYIVK1Zgs2nC0oImzWpj5PStTN94DJMJ3nmg7jUVIQBeuv0l7qtxH2m2NB6c8SCRSZH5lFZECiMns4n/3VWDKYOb4O/pwu5T8dzzxWr+3Hna0dFERERERPKFekSIiMgV1fqqFnuj9zLtwWn0rtvb0XGKhKSkJLy8vABITEzE01N3wBYUSWlWHvtpC6sPRePiZOazhxpwd90y17Wvs6lnaTKpCQfOHKBdxXYs7r9YxTwRucjpsymMmr6NTaGxAAxqUZEX774FF4vuGRMRERGRokN/3YqIyGUdjjnM3ui9OJmc6FS1k6PjiOSr2KR0+kzawOpD0Xi4ODF5UOPrLkIA+Lr5MqfXHLxcvFgeupwxS8fkYVoRKSrK+LozbWgzHmtTGYApa0PpMWEtx2OSHZxMRERERCTvqBAhIiKXNf/AfABah7TGz93PwWlE8s/psyn0+GYdO47H4efhzLShzWhVLeCG91srsBZTuk4B4ON1HzNj14wb3qeIFD3OTmZe6HwL3w1shK+7MztOnKXLF/+wZE+Eo6OJiIiIiOQJFSJEROSy/jiQOT/EvdXvdXASkfxzOCqR7l+v41BkImV83Zg1rDkNypfIs/13q9WNMS0ze0MMmTeEnRE782zfIlK03HFLaRaMakWD8iWIT7Uy9MfNvLNwLxk2u6OjiYiIiIjcEBUiRETkkuJS41gZthJQIUKKrp0nztJzwjpOxqVQOcCTXx9vQdVS3nl+nLfav0WHyh1IzkjmgRkPEJsSm+fHEJGioZyfBzMfa86QlpUAmLjqCA9NXM+puBQHJxMRERERuX4qRIiIyCXNPzAfq91KzYCaVCtZzdFxRPLcqgNR9Jq4jjNJ6dQN9mXWsOYEl3DPl2M5mZ2Y3m06FUtU5HDsYfrN6Yfd0B3OInJpLhYzr95biwn9GuLtZmFLWCxdvviHFfsjHR1NREREROS6qBAhIiKX9Nve3wDodks3BycRyXtzt51kyJRNJKfbaFm1JNOGNqWkl2u+HrOkR0l+6/kbbhY3Fh5cyNgVY/P1eCJS+HWqE8SCka2pE+xDbHIGg77fxId/7cOqoZpEREREpJAxGYZhODqEiIgULEnpSQR+GEiKNYWtj27l1jK3OjpSkZKens7nn38OwJNPPomLi4uDExUv3646wtsL9wJwX/2yfNSjPi6Wm3dvxk87fmLA3AEAzHtoHvfW0NBnInJlqRk23l6wl5/WhwHQtJI/X/S+ldI+bg5OJiIiIiKSOypEiIjIRX7d8ys9ZvWgUolKHB51GJPJ5OhIIjfMbjd4Z+FeJq0+CsCQlpV4ucstmM03/9/3qD9H8eXGL/Fx9WHT0E1UL1n9pmcQkcLnjx2nGDP7X5LSbQR4ufD5Q7fSsmqAo2OJiIiIiFyVhmYSEZGLZA3L9OAtD6oIIUVCutXO/2Zuzy5CvHh3TV65xzFFCICP7/qY1hVaE58WzwMzHiAhLcEhOUSkcLm3fln+GNmKmkHeRCem0/+7DXyz8jC6t0xERERECjoVIkREJIc0axrzD8wHND9EfrHZbGzatIlNmzZhs9kcHafIS0yz8vAPm5i7/RQWs4lPetbn0durOLTI5uzkzMweMynrXZY9UXsY/PtgTV4tIrlSOdCLuSNa0qNhOewGvPvnPp6Yvo3kdKujo4mIiIiIXJaGZhIRkRzmH5jPvdPvpax3WY4/fRyzSTXrvJaUlISXlxcAiYmJeHp6OjhR0RWVkMaQKZvYefIsHi5OjO97G21rlHJ0rGzrT6zn9u9vJ8OewWttXuP1tq87OpLcZNHJ0YTFhZGckYyLkwvlfctTxquMeqPJVRmGwdQNxxg7bzdWu0HNIG++6d+QkJJqU0RERESk4LE4OoCIiBQsWcMyPVDzARUhpFALO5PEgMkbCTuTjL+nC98Pakz98iUcHSuHZuWaMfHeiQz+fTBjV46lVmAtetbu6ehYko9sdhuLDi1i2q5prAhdwamEUxdtU9K9JC3Kt6BLtS70rN0TP3c/BySVgs5kMtG/WQg1g7x5fOpW9oUncO+Xq/mi960FquAqIiIiIgLqESEiIhfIsGUQ9HEQMSkx/D3gb9pVaufoSEWSekTkv50nzjJ4ykaiE9Mp7+/Oj0OaUimg4P6eRy8ezcfrPsbd4s4/g/+hYdmGjo4kecwwDH7Z9Quvr3ydA2cO5FhXxqsM3q7epGSkcCrhFDbj/JBt7hZ3+tXrx8gmI6lbuu7Nji2FRPjZVB7/eQvbjsVhMsGYTjV59PbK6lkjIiIiIgWGChEiIpJt2ZFl3PnTnQR4BHD6mdNYzOo4lx9UiMhfqw5E8fjULSSl26hVxocpQxpTytvN0bGuyGa3ce/0e/nz0J8EewezaegmyniXcXQsySMn408yZN4QFh9eDICfmx/96/XngVseoHHZxni6nP9/QJo1jR0RO1h6ZCm/7PqFnZE7s9d1r9Wd9+98n8p+lW/6Z5CCL81q4/V5e5i+8RgAPRqW4+0H6uJiUe9GEREREXE8FSJERCTb8AXD+Xrz1zx868NMum+So+MUWSpE5J8Zm47x4pxd2OwGLaqU5Jv+DfF2c3Z0rFw5m3qW5t81Z2/0XpoEN2HFwBW4O7s7OpbcoL+P/s1Dvz5EVHIUrk6uvNT6JZ5q9hTert5Xfa9hGPxz7B++3Pglv+39Dbthx93izgcdPmB44+EaPk8uYhgGP6wN5Y35e7Ab0KSSPxP6NcTf08XR0URERESkmFMhQkREALAbdoI/CSY8MZyFfRbSuVpnR0cqslSIyHuGYfDx4gOMW34IgAduDea9bnVxtTg5ONm1ORRziKaTmhKTEkPfun356YGfNLRKITZ953QGzh1Ihj2DBkENmNF9BtVLVr+ufe2M2MmoRaNYEboCgDsq3cH3Xb+nvG/5PEwsRcXy/ZGMnLaNxDQrISU9+G5gY6qW8nJ0LBEREREpxnQblYiIALD2+FrCE8PxcfXhjsp3ODqOSK6lWW08NWN7dhFiVPuqfNKzfqErQgBU9a/KrB6zcDI58fPOn3nnn3ccHUmu08///kzf3/qSYc+gZ+2erB2y9rqLEAB1S9dl2YBlfNHpC9wt7iw7uoxG3zZiw4kNeZhaiop2NUrx2/AWlPNzJ+xMMg+MX8M/B6McHUtEREREijEVIkREBIAZu2YAcF+N+3Bx0hAO+cnZ2ZnXXnuN1157DWfnwjFsUEEVl5xO/+828vv2U1jMJj7oVo//3VWjUPciaF+pPV92/hKAl5e/zPSd0x2cSK7VggMLGDh3IAYGjzV8jOndpufJMFtmk5mRTUeyfdh26peuT2RSJG1/aMvM3TNvPLQUOdVLe/P7iJY0CvEjIdXKoO838dO6UEfHEhEREZFiSkMziYgIVruV4E+CiUyKZEGfBdxd7W5HRxK5quMxyQz6fiOHo5LwdrUwvt9ttK4W6OhYeeaZv57hk/Wf4OLkwtL+S2kd0trRkSQX/o34lxbftSApI4n+9foz5f4p+TKXQ2J6Ir1n92b+gfkAfNrxU55q9lSeH0cKvzSrjRd+28lvW08CMLB5CK/cUwuLk+5JExEREZGbR4UIERFh8eHFdJzakZLuJTn9zGmcnXSXvhRs24/H8cgPm4hOTKeMrxvfD25MzSAfR8fKU3bDTo9ZPfht72/4u/uz7uF1NzS0j+S/2JRYbpt4G6FxobSv1J5FfRfl6/9PbXYboxeP5rMNnwHweafPGdV0VL4dTwovwzD4euVhPli0H4Dbqwcyrs+t+LipvRcRERGRm0O3wYiICNN2TgOgZ+2eKkLcBHa7nd27d7N7927sdruj4xQ6i3eH89DEdUQnplOrjA9zR7QsckUIyByG56cHfqJJcBNiUmK4++e7iUrSGO8FlWEYDF84nNC4UCr7VWZWj1n5/v9TJ7MTn3T8hJdavwTAk4ue5OtNX+frMaVwMplMDG9blQn9bsPd2YlVB6J4cPxajp1JdnQ0ERERESkm1CNCRKSYS8lIofRHpUlIT2DVoFUa/uUmSEpKwsvLC4DExEQ8PT0dnKjw+H7NUd6YvwfDgLY1AhnX5za8XC2OjpWvIhIjaP5dc47GHaVpcFOWDViGp4v+zRQ0U/+dSv85/XEyObFmyBqalmt6045tGAZjlo7hg7UfAPDj/T/Sv37/m3Z8KVx2nTzLwz9sIiI+DT8PZ77p34gmlfwdHUtEREREijj1iBARKeYWHlxIQnoC5X3K07JCS0fHEbkkm93gjT/2MPaPzCJEn6YVmDSgUZEvQgCU9irNwr4L8XPzY8PJDTw480HSrGmOjiUXOBp7lBELRwDwetvXb2oRAjLvdn/vzvd4qulTADzyxyOsPb72pmaQwqNOsC/znmhF3WBfYpMz6DtpPb9uOeHoWCIiIiJSxKkQISJSzE3fNR2A3nV658uEqiI3KiXdxvCftzB5zVEAnu9Uk7fvr1OsJlqtGVCThX0X4unsyeLDi+k/pz82u83RsYTMuTwGzB1AfFo8Lcu35IVWLzgkh8lk4uOOH/PgLQ+Sbkvn/l/uJywuzCFZpOAr7ePGzMeac3fdIDJsBqNn7eC9P/dht6uzvIiIiIjkj+LzDV5ERC5yNvUs8w/MB6B33d4OTiNysejENHp/u56/dkfg4mTmy9638njbKphMJkdHu+malWvGnF5zcDY7M2vPLIYvGI5G2HS877d9z+pjq/Fy8eKnB37CyezksCxmk5kf7/+RW4NuJSo5inum30NCWoLD8kjB5u7ixLjetzGyfVUAJqw8zGNTt5CYZnVwMhEREREpilSIEBEpxubsm0OaLY1bAm6hfun6jo4jksPhqEQeGL+G7cfjKOHhzM9Dm3Jv/bKOjuVQHap04OcHf8aEiYlbJ/LS3y85OlKxFpMSw/NLnwdgbNuxVPKr5OBE4Oniybze8wjyCmJX5C5G/jnS0ZGkADObTTxzVw0+69UAF4uZJXsi6P71Wo7HaBJrEREREclbKkSIiBRjWcMy9anbp1jeYS4F18ajMTw4fi3HY1Ko4O/B7Mdb0LiiJlMF6FG7B9/c8w0A765+l4/XfuzgRMXXi8te5EzKGeqUqsPIJgXngn85n3LM6jELs8nMDzt+4Jddvzg6khRw998azIxHmxHo7cq+8AS6frWGTaExjo4lIiIiIkWIChEiIsVURGIES48sBeChOg85OI3IefN2nKLfpA2cTcmgQfkS/Da8BVUCvRwdq0AZ2nAo797xLgCjl4zm2y3fOjhR8bPp5CYmbpkIwFd3f4Wzk7ODE+XUqkIrXm79MgDD5g8jNC7UsYGkwLu1gh+/j2hJ7bI+xCSl0+fb9czcdNzRsURERESkiFAhQkSkmJq1ZxZ2w06T4CZU9a/q6DjFirOzM6NHj2b06NE4Oxesi5eOZBgG41ccYtT0baTb7HSqHcQvjzYjwMvV0dEKpOdbPs/o5qMBeHT+o9kXxSX/GYbBE38+gYFB/3r9uT3kdkdHuqRX2rxC83LNOZt2lr6/9cVq19j/cmVlS7gza9j5Sayfm/0vb83fg02TWIuIiIjIDTIZmuVQRKRYajqpKRtPbuTTjp/yVLOnHB1Hijmrzc4rv+9m+sZjADzcqhIv3n0LTmYNGXYlhmHw9F9P8/mGzwGY0GUCjzV6zMGpir7f9v5Gt5nd8HT25NCoQwR5BTk60mUdjT1K/Qn1SUhP4JO7PuHp5k87OpIUAna7wRd/H+SzpQcBaFM9kC/73IqPm4rnIiIiInJ91CNCRKQY2hO1h40nN2IxW+hTt4+j40gxF5+awZAfNjN94zHMJnj93lq8ck8tFSFywWQyZRYTmz4FwLAFw/h609eODVXEWe3W7EnC/9f8fwW6CAFQya8SH9+VOY/IK8tfISwuzMGJpDAwm008dWd1vupzG27OZlYeiOKBr9YQGp3k6GgiIiIiUkipECEiUgxN2T4FgC7VulDKs5RjwxRDdrud0NBQQkNDsdvtjo7jUMdjkuk2fi2rDkTh5mzmm/6NGNSykqNjFSomk4lPOn7CM82fAWD4wuF8tfErB6cqun7c8SP7ovdR0r1k9u+8oHv4todpVaEVSRlJjFg4AnWIltzqUq8Mvw5rQZCPG4ejkuj61RrWHop2dCwRERERKYRUiBARKWasdis//fsTAIMaDHJsmGIqJSWFSpUqUalSJVJSUhwdx2E2h8bQ9as1HIxMpLSPK78Oa0GHWqUdHatQMplMfNjhQ55t8SwAT/z5BF9s+MLBqYqeVGsqr694HYAXWr2Ar5uvYwPlktlkZuI9E3E2O7Pg4AJ+3fOroyNJIVIn2Jd5T7SkQfkSnE3JoP/kjfy0Xj1rREREROTaqBAhIlLM/HXoL8ITwwn0CKRLtS6OjiPF1JxtJ+jz7QZiktKpE+zD7yNaUSe4cFzULahMJhPv3/k+Y1qOAeDJRU/y2frPHBuqiPl609ccjz9OOZ9yDG883NFxrsktgbfwQqsXABi1aBTxafEOTiSFSSkfN355tBn3NyiLzW7wytxdjJn9L2lWm6OjiYiIiEghoUKEiEgx8/327wHoW7cvzk6adFJuLrvd4KO/9vP0jB2k2+x0qh3EzMeaE+Tr5uhoRYLJZOKdO97hxVYvAvD0X0/z8dqPHZyqaIhPi+ftf94G4PU2r+Pu7O7gRNfuhdYvUM2/GuGJ4bzzzzuOjiOFjJuzE5/2asBznWpgMsEvm47T85v1nD5bfHv2iYiIiEjuqRAhIlKMnEk+w7z98wAYfOtgB6eR4iYl3cYT07cybvkhAIa3rcL4vrfh4WJxcLKixWQy8Vb7t3i59csAjF4ymjdXvql5AW7QJ+s+4UzKGWqUrMHABgMdHee6uFnc+KTjJwB8uv5TDsccdnAiKWxMJhPD21ZlyuAm+Lo7s+N4HPd+uZr1R844OpqIiIiIFHAqRIiIFCPTdk4jw57BrUG3Uq90PUfHkWIkMj6VXhPXsXBnOM5OJj7qUZ/nOtXEbDY5OlqRZDKZeKPdG7zZ7k0AXl3xKi8se0HFiOsUmRTJx+sye5a81f4tLObCWzzrUq0LHSp3IN2WznNLn3N0HCmk2lQPZP7IVtxSxofoxHT6TtrAd6uP6v8xIiIiInJZKkSIiBQThmEwcetEAAY3UG8IuXl2HI+j61dr+PfEWUp4ODP14aZ0b1jO0bGKPJPJxMu3v8wnd2XeAf/+mvd5ctGT2A27g5MVPu/88w6J6Yk0LNOQbrd0c3ScG2Iymfi046eYTWZ+2/sbK0JXODqSFFLl/T347fEW2fNGvDl/D6N+2U5imtXR0URERESkAFIhQkSkmFh3Yh27InfhbnGnf/3+jo4jxcSszcfp8c06Tp9NpUqgJ3OHt6Rp5ZKOjlWsPN38aSZ0mYAJE19u/JKh84Zis2uC2dwKiwvj681fA/DuHe9iMhX+Xjy1S9VmWMNhADy16CkVp+S6ubtkzhvx2r21cDKb+GPHKe77cjV7T2sydBERERHJSYUIEZFi4pst3wDwUJ2HKOFWwrFhijmLxcLw4cMZPnw4FkvhHeLlSjJsdl77fRfP/vov6VY7d95SmjkjWlIxwNPR0Yqlxxo9xg/3/4DZZGby9sn0m9OPDFuGo2MVCq+vfJ10WzrtK7Xnzsp3OjpOnhnbbiw+rj7siNjBjF0zHB1HCjGTycTglpWY+Vgzyvi6cSQ6ifu/WsP0jcc0VJOIiIiIZDMZ+utQRKTIi0mJIfiTYFKtqax/eD1NyzV1dCQpwqIT0xj+81Y2Ho0B4Kk7qzGqfTXNB1EA/LrnV3rP7o3VbqVrja7M6D4DV4uro2MVWHui9lD367rYDXuR/H/nW6ve4pXlr1DVvyp7hu/B2cnZ0ZGkkItNSud/M7ezfH8UAPc3KMvbD9TF07VoFt1FREREJPfUI0JEpBj4ccePpFpTqV+6Pk2Cmzg6jhRh/56I494vV7PxaAxerha+HdCIp+6sriJEAdG9Vnfm9pqLq5Mrv+//nft+uY/kjGRHxyqwXv77ZeyGnQdqPlDkihAATzV7ikCPQA7FHGLK9imOjiNFgJ+nC98NbMyYzjVxMpuYu/0U945bzb5wDdUkIiIiUtypECEiUsQZhpE9LNNjDR8rEuObF3aGYRAVFUVUVFSRGrbi1y0n6D4hcz6IyoGezB3Rkg61Sjs6lvxHl+pdWNh3IZ7Oniw+vJhOUzuRkJbg6FgFzoYTG5izbw5mk5m32r/l6Dj5wsvFi5davwTA2JVjSclIcXAiKQrMZhPD2lRhxqPNCPJx40hUEl3HrWHGJg3VJCIiIlKcqRAhIlLE/XPsH/ZF78PT2ZO+9fo6Oo4AycnJlCpVilKlSpGcXPjvRs+w2Xl93m5Gz9qRPR/E3BEtqVrKy9HR5DLaV2rP4v6L8XH14Z9j/3D3tLtJTE90dKwCwzAMxiwbA8CA+gOoFVjLwYnyz2ONHqO8T3lOJpzMnpRbJC80qujPwidb07ZGIGlWO8/P3snTM7YTn6r5aURERESKIxUiRESKuC83fglAn7p98HH1cXAaKWpOxCbT85t1TFkbCmTOBzGxf0N83DTWfEHXonwLlg1Yhq+rL6uPrabLtC4kpSc5OlaBsOTIElaErsDFyYXX27zu6Dj5ys3ixuttXwfgvdXv6d+A5Cl/TxcmD2zMc51qZA/V1Pmzf7LnEBIRERGR4kOFCBGRIuzY2WPM2TsHgJFNRjo4jRQ1S/dE0OWL1Ww7FoePm4VJmg+i0GlUthFL+i/Bx9WHVWGruGf6PcX+QrTdsPPishcBeLzR44SUCHFwovw3oP4AKvtVJio5iolbJjo6jhQxZrOJ4W2rMvOxZpT3d+dkXAq9Jq7jvT/3kW61OzqeiIiIiNwkKkSIiBRh4zeNx2bYaF+pPXVL13V0HCki0q123pq/h0d+3MzZlAzqly/BglGtuVPzQRRKjYMbs7jfYrxdvFkRuoJ7p99brCewnr1nNltOb8HLxYsXW7/o6Dg3hcVs4YVWLwDw4doPSbWmOjiRFEUNQ/z588nb6dmoHIYBE1Ye5v6v1nAgQnPUiIiIiBQHKkSIiBRRyRnJ2Xe2jmoyysFppKjIGopp0uqjADzSqhKzHmtOeX8PByeTG9G0XFP+6vcXXi5eLA9dTtdfuhbLiYvTbem89Hfm5M3PNH+GUp6lHJzo5hlQfwDlfcpzOvE0k7dNdnQcKaK8XC180L0+E/o1xM/DmT2n47nny9V8u+oINrsmshYREREpylSIEBEpoqb+O5XY1FgqlajEPdXvcXQcKQKW7Ing7s//YfvxzKGYJvZvyMv31MLFoj8nioLm5ZuzqO8iPJ09WXpkKffPuL/A3hm/fv16unbtSkBAAG5ublSvXp2XX375miZ/v/POOzGZTJhMJsLDwwGYsHkCB2MOEugRyPBbhzNixAgCAgLw9PTkvvvuIyws7JL7Onv2LEFBQfTu3fuaP0toaCgmk4mKFStecbtBgwZhMpmYMmXKJZdnPcxmM76+vlSsWJF7772XDz74gIiIiKvud9pP03i+5fNA5lwR6bb0a/4sIrnVqU4Qfz11O22qB5JutfP2wr10+3qtekeIiIiIFGG6ciAiUgQZhsEXG74A4IkmT+BkdnJwIinMsoZiGvrjZuJTrTQ4NxTTXbWDHB1N8ljLCi35s++feDp7svjwYh6Y8UCBK0b8/PPPtGrVinnz5lGxYkXuvvtuUlNTefvtt2nRogUJCVe/kDllyhSWLVuGyXR+PpPYlFjGrhwLwJvt3uSV515h/PjxhISE0Lp1a+bPn8/dd9+NzWa7aH+vvvoqSUlJfPTRR3n3Qa9Ry5YtGThwIAMGDOCuu+6iXLlyLFu2jOeff54KFSrw/vvvYxhXvuP84dsepoxXGY7HH+fHHT/epORSXJXycWPK4Ma8360u3q4Wth+P454vVvPlsoNk2DR3hIiIiEhRo0KEiEgRtPTIUnZH7cbT2ZMhtw5xdBz5D4vFwsCBAxk4cCAWi8XRca7oYEQCD369JsdQTDM1FFOR1jqkNQv6LMDD2YNFhxbRbWY30qxpjo4FwIkTJ3jkkUew2WxMnjyZzZs389tvv3Hw4EF69OjBjh07eO655664j6ioKEaPHs1dd91FhQoVspe/teotYlJiqBVYi7vL3M3kyZPp3LkzmzdvZtGiRbz55pvs2bOHOXPm5Njfrl27GD9+PK+88grBwcH58rlz45FHHmHKlClMmTKFWbNmsXr1as6cOcMXX3yBxWJhzJgxvPTSS1fch5vFjWdbPAvAu6vfxWq33ozoUoyZTCZ6Na7A4v/dzh01S5Fus/PxkgN0HbeGXSfPOjqeiIiIiOQhFSJERIqgd1a/A8DDtz5MCbcSjg0jF3F1dc2+YOjq6uroOJdktxtMXn2ULl+uZtfJeEp4OGsopmKkTcU2zO89H3eLOwsPLqTHrB4FYqieKVOmkJqaSocOHRg8eHD2cldXV7766is8PDz47rvvOHPmzGX38dRTT5GUlMT48eOzl4XGhvLlxi8B+Piuj9m3Zx9Wq5UBAwZk95oYMiSzqLt9+/Yc+3viiSeoUqUKTz/9dF59zDzj7u7OyJEjWbBgAU5OTrz77rvs2LHjiu95tOGjBHgEcCT2CNN2TrtJSaW4K+PrzqSBjfisVwNKnJs74r5xq3njjz0kpqkgJiIiIlIU6EqCiEgRs/b4WlaErsDZ7MzoFqMdHUcKoVNxKfSfvIE35u8h3WqnTfVAFj91u4ZiKmbaVWrHH73/wM3ixh8H/qDXr73IsGU4NNOWLVsAaNu27UXrAgMDqVWrFhkZGSxcuPCS7//rr7+YNm0aL730ElWqVMlePnbVWDLsGXSs0pFOVTsRGxsLgJ+fX/Y2Wa9jYmKyl02bNo2VK1fy5Zdf4uzsfMOfL7+0bds2e/6KL7/88orberp48kzzZwB4+5+3sdkvHopKJD+YTCbuvzWYJU+3oUu9MtgNmLzmKHd8vIL5/5666tBiIiIiIlKwqRAhIlLEvLv6XQAG1B9Aed/yDk4jl2IYBklJSSQlJRWoCyuGYfD79pN0/GwVaw6dwc3ZzJv312HK4MaU8nFzdDxxgDsq38HvD/2Oq5Mrc/fNpffs3g4tRiQlJQE5CwQX8vf3B7jkXf/JyckMGzaMmjVrXjR806KDi7CYLXx0V+YcD1lDNh08eDB7mwMHDgAQEhICQGJiIs8++yzdunWjQ4cON/KxboqHHnoIgOXLl1912xGNR+Dn5seBMweYu29uPicTySnQ25Wv+tzGD0OaULGkBxHxaTwxbRsDJm8kNDrJ0fFERERE5DqpECEiUoTsCN/B/APzMZvMPN/yeUfHkctITk7Gy8sLLy8vkpOTHR0HgPCzqQz9cQtP/rKdhFQr9cuXYOGo1vRvFpJjQl8pfu6qchdzes3BxcmF2Xtn0/e3vg4bpikwMBCAsLCwS67PWh4aGnrRuldeeYXQ0FC+/vprXFxcADA4Xwh8pvkz1ClVB4AGDRpQpkwZPvnkE3bt2kVERATPPfccJpOJzp07A/DGG28QFxfHJ598kmefLz81aNAAgCNHjpCefuX/ft6u3oxoPAKA99dcfZJrkfzQpnogi566nafurIaLxcw/B6O567NVfPTXfpI0XJOIiIhIoaNChIhIEfLemvcA6FGrB9VKVnNwGikMDMNg+sZjdPhkJUv3RuDsZOJ/Haoze1hzKgd6OTqeFBCdq3Vmds/ZOJudmbVnFg/OeJCUjJSbnqNNmzYATJ8+/aKL6evXr2f//v0AJCQk5Fi3detWPv/8cwYOHJhjWKe41DgAyvmW49U2r2Yvd3Nz48MPPyQ0NJS6desSFBTEX3/9xbBhw6hXrx779+/ns88+48UXX8wx4XVKSsp1X7QPCwvDZDJd9vHDDz9c136zBAQEZL/OGnrqSkY2HYmbxY1NpzaxInTFDR1b5Hq5OTvx1J3V+eup22ldLYB0q51xyw/R7qMV/LrlBHa7imQiIiIihYXF0QFERCRv7Ivex8zdMwF4sfWLDk4jhUHYmSTGzN7JuiOZE/s2KF+CD7rXo3ppbwcnk4Lonur3MK/3PB6Y8QALDi6gy7QuzOs9Dy+Xm1ew6tu3L2+//TbHjh2ja9eufPTRR1SoUIE1a9YwdOhQLBYLVqsVs/n8vTY2m42hQ4dSokQJPvroo+zl28O3E58WD8B7d7yHh7PHRceqXLkys2bNIjU1lfbt29OtWzcARo4cSYUKFRg9OnMenl9++YUxY8YQFhaGr68vTzzxBG+88UaOHFfj6elJ9+7dL7t+9erVHD58ONf7+68LCyS56eVUyrMUQxoMYfzm8by/5n3aVWp33ccWuVGVAjz5cUgTFu+J4J2Fewk7k8zoWTv4cV0or95Ti0YV/R0dUURERESuQoUIEZEi4qW/X8Ju2Olaoyv1StdzdBwpwNKtdr5bfZTPlx0gNcOOm7OZ0XfVYHDLSjiZNQyTXF6nqp34q99f3DPtHpaHLqfDTx1Y2Gchfu6XnrMhr3l6ejJ//nzuueceFi1axKJFi7LXVahQgf/973988MEHOeaQ+Oyzz9i6dSvfffdddq+AlIwU+s/pT9bITHdUvuOSx2vevDnNmzfPsWz27NksWbKE+fPn4+rqypYtW+jTpw8dO3bk888/Z+XKlbz99tuUKlWKUaNG5fqzBQQEMGXKlMuuHzRo0A0VIqKjo7NfX26Ojf96psUzTNgygb8O/8WO8B3UD6p/3ccXuVEmk4mOtYNoWyOQKWtC+fLvQ/x74izdJ6yjS70yjL6rBpUCPB0dU0REREQuQ0MziYgUARtPbuS3vb9hNpl5u/3bjo4jBdiqA1F0+mwV7y/aR2qGnRZVSrL4qTY80rqyihCSK7eH3M6yAcvwc/Nj/Yn1tPuhHacSTt2049etW5d9+/bxww8/MHLkSB5//HEmTJjArl27srepXbt29us//vgje2ijtm3b0rZtW6reVpVd7++Cc/PePvjgg7Rt25bVq1df8dgpKSk888wz3HvvvXTp0gWAjz/+GC8vL2bOnEnXrl355JNPaNOmDR9++GHef/gbsH37dgCqVauGs7Nzrt5T2a8yPWr1AOCDtR/kVzSRa+JqceKxNlVYProtvZtUwGSCBf+e5s5PVvLinJ1ExKc6OqKIiIiIXIJ6RIiIFHKGYTBm6RgABtQfQO1Sta/yDimOTsal8OYfe1i0OxyAAC9XXuhckwdvC9Zk1HLNGgc3ZuWglXT4qQM7InbQdFJT5veef9PumHd3d2fAgAEMGDAgx/KlS5cC5JgHAjL/P7lq1arL7m/dunVAzl4Dl/LOO+8QERHBZ599lr1s37591KxZE2/v80OaNWnShJUrVxIfH4+Pj09uPlK+++WXXwBo1+7ahlh6vuXzzNg9gxm7ZvB2+7epWKJiPqQTuXaB3q68+2BdBjQP4cO/9vP3vkimbTjG7C0nGNSyIo+3qUIJDxdHxxQRERGRc9QjQkSkkFtyZAnLQ5fj4uTC621ed3QcKWBSM2yM+/sgd3y8gkW7w3EymxjcsiJ/j25Dt4blVISQ61a3dF3WPryWmgE1ORF/glbft2LhwYUOy7Ny5Uq2bt1K7dq1admyZfbyFStWYBgGhmEQFhdGifdKwOvw3OLnCAkJAeD06dMYhsH9999/2f0fPnyYDz/8kOeee47KlSvnWJecnJzj56SkzK4WBeX8WrFiBb/88gsmk4mRI0de03tvLXMrHSp3wGbY+Hjtx/mUUOT63VLGh8mDGjNrWHMahfiRZrXzzcojtP5gOZ8vPcjZlAxHRxQRERERVIgQESnUbHYbLyx7AYDhjYYTUiLEwYkkN5ycnOjevTvdu3fHyckpX45hsxvM2nycdh+t4KPFmXNBNKnkz4JRrXjt3tr4uOVuaBaRK6nsV5m1Q9bSrmI7EtMTuWfaPYxdMRab3ZZvx9y+fTtWqzXHsq1bt9KnTx9MJhNffvnlJd+XkJbAfdPvIy41jsZlG/Nm+zev6bhPPvkkZcqUYcyYMTmW165dmz179rBt27bM4yQk8Mcff1ChQoUcvSQcITU1lXHjxtGlSxdsNhuvvPIKderUueb9PN/yeQC+2/Yd0clX7jUi4iiNK/oza1hzJg9qRM0gbxJSrXy69ACt3v+bT5YcIC453dERRURERIo1Dc0kIlKITdo6ia2nt+Lt4s2LrV90dBzJJTc3N2bNmpUv+zYMg5UHonjvz33sC08AILiEO891qsF99csWmDu0pejwc/djUb9FjFw4kolbJ/L6ytdZfXw1Pz/4M6U8S+X58Z566in27NlDgwYNCAgIIDQ0lA0bNmA2m/nmm28uOfRQhi2Dh2Y/xI6IHZTyLMWsHrNwccr9kC0LFixgwYIFzJkzB3d39xzrnn32WaZNm0a7du1o374927Zt4/jx40yYMOGGP+u1mDRpEitWrAAye2iEh4ezZcsWkpOTcXV15YMPPmD06NHXte/2ldpzW5nb2Hp6K+M2juP1tq/nXXCRPGQymWhfszRtq5diwc7TfPn3QQ5EJPLFsoNMXn2UgS1CeLhVZfw9NWSTiIiIyM2mQoSISCEVlRSV3RvirfZvEegZ6OBE4mg7jsfxwV/7WHPoDAA+bhZGtq9G/+YhuDnnT88LEQAXJxe+ufcbWlVoxbAFw1h6ZCm1x9fm046f0rdu3zwtgPXr14+pU6eyfft24uLiCAwM5KGHHuLZZ5+lQYMGF21vs9voP6c/Cw8uxM3ixryH5l1T77G0tDSefPJJOnbseMmhm+rVq8fcuXN5+eWXmT9/PkFBQbz33ns89thjN/Apr92aNWtYs2YNJpMJLy8v/P39adeuHW3atGHgwIGUKnX9RSGTycTzLZ+n16+9+HLjlzzb4lk8XTzzML1I3jKbTdxbvyxd6pbhr93hfL7sIPvCE/hq+WEmrw6lZ6NyPNyqMhVKejg6qoiIiEixYTIMw3B0CBERuXZDfh/C99u/p0FQAzYN3YTFrNpycbXr5Fk+XXKAZfsiAXBxMjOwRQgj2lXVRJ1y0+2J2kOvX3uxK3IXAB0qd2Dc3eOoXrL6Tc+Sak2lz+w+zNk3B2ezM78/9Dudq3W+6TmKApvdRo1xNTgce5jPO33OqKajHB1JJNfsdoMleyP4YtlBdp+KB8Bsgk51gnikdWVuq+Dn4IQiIiIiRZ8KESIihdCaY2to9X0rANYOWUvz8s0dnEiuRVJSEl5eXgAkJibi6Xl9dxbvPnWWz5YeZMmeCCDzosr9twbz9J3VKe+vuzzFcdJt6Xy09iPeWPkGabY0nExODG4wmFfavEIF3wo3JcOJ+BP0mNWD9SfW4+LkwozuM7i/5v035dhF1YTNE3h8weNU8K3AoZGHcHbSXDNSuBiGwdrDZ5i46ggrD0RlL28Y4sfDrSrRoVZpnJ00jaKIiIhIflAhQkSkkEm1ptJoYiN2R+3m4VsfZtJ9kxwdSa7RjRYith2LZcLKw/y1+3wBomuDYEa2r0rlQK88zytyvQ6eOcjTfz3NgoMLgMwhnAbUG8BTzZ6idqna+XbcX/f8yuMLHic6OZoSbiWY22subSq2ybfjFRcpGSlU/LwikUmR/PTAT/Sr18/RkUSu2/7wBCb9c4Tft58i3WYHIMjHjX7NKvBQkwoEeLk6OKGIiIhI0aJChIhIIfO/v/7Hp+s/pZRnKXYP302AR4CjI8k1up5ChN1usOJAJBNWHmHj0RgATCa4t15ZRt1RjaqlVICQgmvt8bW89PdLrAhdkb3srip3MbD+QO6tfi/ert55cpydETt5funz/HnoTwAaBDVgds/ZVParnCf7F3j3n3d58e8XqR1Ym38f/xezSXePS+EWGZ/KT+vDmL7xGNGJ6UDmEIf31CtD/+YhNChfIk/nuREREREprlSIEBEpRJYeWUqHnzoAML/3fLpU7+LgRHI9rqUQkW61M2/HKSauOsyBiEQAnJ1M3Fc/mGFtKlOtdN5cwBXJb4ZhsOb4Gj5d/ylz983FbmTegexmcaNjlY60rdiWluVb0iCowTUN+ZOSkcLCgwv5btt32QUIi9nCmJZjePn2l3G16K7mvHQ29SwVPqtAfFo88x6ax7017nV0JJE8kWa1sXDnaX5YG8b243HZy2sGedOrcXkeuDVY8y6JiIiI3AAVIkRECokzyWeoN6EepxJO8XijxxnfZbyjI8l1yk0hIiE1g+kbjzF5dSjh8akAeLla6NO0AoNbVqSMr/tNzSySl47GHmXytsnM2D2DgzEHc6xzdXKlRkANagXWonKJypT0KIm/uz8uTi7Y7DasdisnE05yJPYIB84cYNOpTaTbMu9iNmGiR+0evNXuLaqVrOaIj1YsjFk6hvfXvE/zcs1ZM2SN7haXImfH8Th+WBfKgn9Pk2bNLJq6WMx0qh3EQ43L06xyScxm/bsXERERuRYqRIiIFAJ2w879v9zPHwf+oEbJGmx9bCsezpqMuLC6UiHiSFQiP60P49fNJ0hIswJQytuVIa0q0adpBXzcNDmsFB2GYbAjYgd/HvyTNcfXsPb4WmJTY695PyG+IfSq3YuhDYdS1b9qPiSVC51OOE2lzyuRZktj1aBVtA5p7ehIIvnibHIGv+84yfSNx9l7Oj57eQV/D3o1Lk/3huUo7ePmwIQiIiIihYcKESIihcDzS57ng7Uf4Orkypoha2hYtqGjI8kN+G8hwtXNnWX7IvlpXRirD0Vnb1e1lBeP3l6Zrg3K4mpxclRckZvGbtgJiwtjd9Rudkfu5kT8CWJSY4hJiSHDloGT2QknkxNBXkFU9qtMpRKVaBLchKr+VXVX/k02bP4wvtnyDXdXu5sFfRY4Oo5IvjIMg10n4/ll0zHmbT+VfaOA2QS3Vw+ke8Ny3HlLadyc1VaLiIiIXI4KESIiBdz3275nyLwhAEx9YCp96/V1cCK5UampqXTr1o10q527n/6QWdsiOHU2c/glkwnuqFmKfs1CuL1aoIZ+EJEC6VDMIWqMq4HdsLNj2A7qla7n6EgiN0VKeuZcEjM2HWdjaEz2ch83C/fWL0u3huW4VRNci4iIiFxEhQgRkQJs+dHldJzakQx7Bi+3fpk327/p6EhygwzDYEtYLD+uC+PPXafJsGU2w/6eLvRqXJ4+TSpQ3l/DbolIwffQrw8xY/cM+tTtw88P/uzoOCI33ZGoRH7bepLftp7IvqEAoHKgJ91uK8eDtwVrTicRERGRc1SIEBEpoJYeWcp90+8jxZpC91rdmdF9BmaT2dGx5DolpVn5ffspflwXyr7whOzlt1UoQf/mIdxdt4yGXxKRQmXb6W3cNvE2zCYzB0cepLJfZUdHEnEIu91g3ZEzzN5ygoW7TpOakTnBtckEraoG0L1hOe6qFYS7i9p5ERERKb5UiBARKYAWHFhAt5ndSLOl0blqZ2b3nI27s+6oK4wORSYydX0Ys7ecn3zazdnM/Q2C6dcshDrBvg5OKCJy/Tr/3JlFhxbxeKPHGd9lvKPjiDhcQmoGf+4M59etJ9h49PzQTV6uFu6pV4ZuDcvRKMRPQzeJiIhIsaNChIhIAfPjjh95ZN4jZNgz6FqjKzO6z8DV4uroWHINrDY7S/dG8NP6MNYcOpO9vGJJD/o1C+Humv5UqxgMQGRkJJ6eno6KKiJyQ1aGrqTtD21xdXIl7KkwSnuVdnQkkQLj2JlkZm89wW/bTnA8JiV7ecWSHvRoVJ5ut5UjyNfNgQlFREREbh4VIkRECoh0WzpPL3qa8Zsz7yjtVbsXPz3wE85Ozg5OJrkVmZDKjI3HmbbxGKfPjRVtNsEdt5Smf7MQWlUNwGw2kZSUhJeXFwCJiYkqRIhIoWUYBi0mt2D9ifU83/J53rvzPUdHEilw7HaDjaExzN5yggU7T5OcbgMy/0ZoUz2Qno3Kc8ctpXGxaAhOERERKbpUiBARKQCOxB6h32/9WHdiHQCvtXmNV9u8qjkhCgHDMNgUGstP68NYdMHk0yU9XXioSXl6N6lAOb+ck0+rECEiRcm8/fPo+ktXvFy8OPrkUQI8AhwdSaTASkqz8ueucGZuOs7G0PNDN/l7uvDArcH0alye6qW9HZhQREREJH+oECEi4kApGSl8tv4z3lz1JinWFEq4lWDqA1PpUr2Lo6PJVSSlWZmz7SRT14flmHy6YYgf/ZuF0Llu0GUnn1YhQkSKEsMwaDixIdvCt/FCqxd45453HB1JpFA4EpXIrC0nmL3lBJEJadnL65cvQZ8m5bmvfrAmuBYREZEiQ4UIEREHsNltTP13Ki8vf5kT8ScAaFexHZPum0Rlv8oOTidXcigyganrj+WYfNrd2Yn7by1Lv2Yh1C579cmnVYgQkaJGvSJErp/VZmflgShmbj7Osr2RWO2ZX9G93Sx0u60c/ZpVoGop9ZIQERGRwk2FCBGRmygqKYrvtn3HhM0TCDsbBkAF3wq83f5t+tbti8lkcnBCuZSsyad/XBfG2sPnJ5+uHOBJv2YhdGtYDl/33M/loUKEiBQ16hUhkjeiE9P4dcsJpm04xrGY5OzlTSv5069ZCB1rB2kuCRERESmUVIgQEclnhmGw/sR6xm8ez8zdM0m3pQPg7+7P8y2fZ1TTUbhZ3BycUi7lbHIGMzYf44e1YZyMSwEyJ5a885bSDGhekZZVS15X8UiFCBEpin7f9zv3z7hfvSJE8oDdbvDPoWimrg9j2d4IznWSIMDLhZ6NytO3WQjBJdwdG1JERETkGqgQISJyg5KTk1m8eDF//PEHmzZtIjQ0FJvNRuUqlancojJHbznKzrid2ds3LtuYEY1H0LN2T9ydL/4COWXKFAYPHnzV4/7www8MGDAgTz+LZDoUmciUtUeZveUkKRk2IHMSyd5NytO3aQhlb/CLf0pKCp07dwbgzz//xN1dFxJEpHAKCwvjiy++YNOmTRw5coRTEacwTAalQ0ozctBInn76aTw8PHK9v7Zt27Jy5corbmMymbDb7TcaXaTQOH02hekbj/PLxmPZc0mYTdCxdhCDWlSkSSV/9aoVERGRAk+FCBGRGzRp0iSGDh0KQO3atSlfpTx7T+4lbFcYpAEB4PqIK32a9eHxRo/TOLjxFfe3evVqJk2adMl1Z8+eZe7cuQAcPnyYypU1n0ResdsNVh6M4vs1oaw6EJW9vGaQN0NaVuK+BmVxc9aEkSIiF5o/fz733nsvQUFB1KxZE5uHjX/2/wMngVSoW7cuq1atokSJErna33vvvce+ffsuuW7Lli3s2rWL22+//arFCpGiKMNmZ9klhoqsVcaHQS0rcl99/a0iIiIiBZcKESIiN+jHH39k3bp1NOrWiFnhs/jr8F+ZKxLAZYYL6SfS6dazG7/O+PWGj/X1118zfPhwWrZsyerVq294fwJJaVZmbz3BlLWhHIlKAsBkgg63lGZwy0o0q6y7DEVELuf06dPExMRQu3ZtIHM4wtsm3sb20O1U/KsiodtCef7553nvvfdu+FhNmzZl48aNfPvttzzyyCM3vD+Rwmx/eAJT1oYyZ9sJUjMyewj5e7rQp0kF+jULIchXw36KiIhIwaJChIjIDbDZbfyy6xfeWf0Oe6L2AGDCxD3V72F44+F4R3rTqmUrXF1diY+Px8XF5YaO17JlS9auXcuECRN47LHH8uIjFFvHY5L5YW0oMzYfJyHVCoC3q4VejcszsEVFyvvnfigRERE5L2uuCLdTbqROTKVx48Zs3LjxhvZ58OBBqlevjqurKxEREfj6+uZRWpHCLS45nV82Heendefns7KYTXSuW4bBLStyWwU/BycUERERyWRxdAARkcLIMAzm7pvLK8tfYXfUbgC8Xbx5+NaHGdV0FJX8KgGQXDYZgLS0NM6cOUOZMmWu+5hHjx5l7dq1uLi40LNnzxv/EMWQYRhsOBrD92uOsmTP+YkfKwV4MqhFRbo1LIeXa/43jUlJSVSsWBGA0NBQTVYtIkXKfTXuo0lwEzYezyw+3GgRHmDq1KmZ+77vPhUhRC5QwsOFYW2q8EirSizZE8H3a0PZeDSGP3ac4o8dp2hQvgRDWlWic50gnJ3Mjo4rIiIixZgKESIi1+jfiH8Z9ecoVoZljk9dwq0Ez7Z4lieaPIGPq0+ObY8cOQKAs7Mz/v7+N3TcrIswXbp0wc9Pd7ddi9QMG/N2nOL7NaHsPR2fvbx1tQCGtKxEm+qBmM03d/il6Ojom3o8EZGbxWQy8UbLN+j0YScAGre58txIufHzzz8D0K9fvxvel0hRZHEy07luGTrXLcPuU2f5fk0o87afYvvxOEZN30aQjxv9m4fQp0kF/DxvvDgoIiIicq1UiBARyaWEtARe+vslvtr0FXbDjrvFnf81/x+jW4ymhFuJS77n888/B6BTp064urre0PGzLsL079//hvZTnETEpzJ1fRjTNhzjTFI6AO7OTjx4WzCDWlSkWmlvBycUESkaYmNjefrppwGIiopiw4YNcAaoAWG1wm5o3+vWrePw4cOULFmSzp0750FakaKtdllfPupRn+c71eTnDWFMXR9GeHwqH/61ny//PsgDt5ZjSEv9HSQiIiI3l+aIEBHJhVVhqxg0dxBH444C0L1Wdz7q8BEhJUIu+56FCxdyzz33YLFY2LRpE/Xr17/u42/cuJGmTZvi5+dHeHh4ngxzUZRtPx7H92uOsuDf01jPjb9U1teNAS0q8lDj8pTwcOzvLykpCS8vLwASExM1NJOIFHonTpygfPnyOZZ1uKcDS2ouAS9Y//B6mpZrel37Hj58OF9//TUjRoxg3LhxeRFXpFhJs9qYv+M0k9ccZfepgtEzVERERIof9YgQEbmCdFs6Ly57kU/WfYKBQYhvCN/e+y0dqnS44vv27t1Lv379MAyDDz/88IaKEHB+WKZevXqpCHEZGTY7i3aF8/2ao2w9Fpe9vHFFPwa3rMRdtUpj0djIIiL5oly5chiGgWEYnDhxgiVLlvDSSy/httqN1J6pjF4ymlWDVmEyXdvFzoyMDGbOnAmoR6DI9XK1ONGtYTkevC2YjUdj+H5NKIv3hPPPwWj+ORhN5QBPBrWsSLfbyuF5E+bKEhERkeJJPSJERC7j2Nlj9JzVkw0nNwAwpMEQPu306UXzQPzXiRMnaNmyJceOHeN///sfH3/88Q3lsFqtBAcHExkZyZo1a2jRosUN7a+oiUlKZ/rGY/y0LnPYAQAXJzP31C/DkJaVqBNc8CY1VY8IESkONm/eTLNmzbAH2jEeM5jWbRq96/a+pn3MmzePrl27Uq1aNQ4cOJBPSUWKn+MxyfywNpQZm46TkGYFwNvNQu8mFRjQPIRyfh4OTigiIiJFjQoRIiKXsPjwYvrM7sOZlDOUcCvBlK5T6Fqz61XfFx0dTevWrdm3bx+DBw/mu+++u+a7P/9r4cKFdOnShcqVK3P48OEb2ldRsi88nu9XhzJ3+0nSrHYAArxc6Ns0hL7NKlDK283BCS9PhQgRKS5q167Nnj17YBQEhwSz74l9eLl45fr9PXv2ZNasWYwdO5ZXX301H5OKFE+JaVZmbznB92uOEnomGQCzCTrWDmJIq0o0CvG74b9lRUREREBDM4mIXGT8pvGM/HMkdsPObWVu49cev1LJr9JV35eQkEDnzp3Zt28fDz74IN9++22efHHLGpapX79+N7yvws5mN1i6N4Ipa0JZd+RM9vI6wT4MblGJe+qXwdXi5MCEuWM2m2nUqFH2axGRoiogIACAsk5lOZlwknf+eYd37ngnV++Nj4/njz/+ANQGiuQXL1cLA1tUpH+zEJbvj2TymqOsOXSGP3eF8+eucOoG+zK4ZUXuqVcWF4v+ZhEREZHrpx4RIiLn2A07zy95no/WfQTA4AaDGd9lPG6Wq99Zn5aWRufOnVm+fDkdO3Zk3rx5eTKXQ2JiIqVLlyY5OZkDBw5QrVq1G95nYXQ2JYNZm4/zw7pQjsekAOBkNtGpdhCDW1akoe7WExEpcOLj4ylXrhyJiYlMWT2FgUsG4uLkwu7hu6nqX/Wq7588eTIPP/wwLVu2ZPXq1TchsYhAZq/TKWtC+W3bSdLP9ToN9Half7MQ+jStQICXq4MTioiISGGkWxpERICUjBR6zuqZXYR4u/3bfHffd7kqQthsNnr37s3y5ctp3bo1v/32W66KEOPGjaNmzZq88MILl93mt99+Izk5mWbNmhXLIsThqERembuL5u8u460Fezkek0IJD2ceb1uFf55rx1d9b6NRRX8VIUREHGT8+PH8+++/Fy0/efIkffr0ISEhgS5dutC/eX86VulIui2dEQtHcMcdd1CzZk02btx42X1n9QjUJNUiN1fNIB/e61aPdWPaM/qu6pTydiUqIY1Plhyg+bvLeGLaVtYcisZu1z2NIiIiknsamklEir3IpEi6/tKV9SfW4+LkwpSuU65pMs1x48YxZ84cIHMIiuHDh19yu48++ih7iArInE9i//79nD59+rL7Lo4XYTJsdpbtjeDnDcf452B09vLqpb0Y3LIS9zcIxt2l4A+/JCJSHMycOZMRI0ZQq1YtatasibOzM8ePH2fLli2kpaVRu3ZtJk6ciMlk4svOX1L367osPryYgL0BRJ+OJjk5+ZL7PXnyJCtXrsTFxYWePXve5E8lIgAlvVx5on01Hr29Cn/uOs3k1UfZceIs8/89zfx/TxNS0oNejcvTvWG5Aj03l4iIiBQMKkSISLG2P3o/d0+7myOxR/Bz8+P3h36ndUjra9pHbGxs9uusgsSlvP766zkKEVdz+vRp/v77b5ydnenVq9c1ZbpRycnJLF68mD/++INNmzYRGhqKzWajatWqdOvWjf/973/Zky1fiz///JNPPvmETZs2kZ6eTpUqVRgwYABPP/004Qnp/LLxODM3HycyIQ0AkwnuqFmaIS0r0rxKySLT8yE5OZlatWoBsGfPHjw8PBycSETk+jz77LNUqVKF9evXs3z5chISEvD19aVZs2Z069aNoUOH4uaWeYGyWslqvNbmNV78+0ViUmOuuN+ff/4Zu91Oly5d8PPzuxkfRUQuw8VipmuDYLo2CGbXybNM33iM37efIuxMMq9+NJ4RCz4FYOgzLzPhgzcwm3P399q///7LxIkT2bx5M8eOHePMmTO4ublRq1Yt+vbty7Bhw7BYdMlCRESkqNAcESJSbP0T9g9df+lKbGoslf0qs7DPQmoE1HB0rAJh0qRJDB06FIDatWtTq1Yt4uPjWbt2LQkJCdSsWZOVK1dSqlSpXO/z/fffZ8yYMZjNZpo2bUpgYCDr168nMjKSsrWb4tzlRTBl9nQI8HKhR6Py9G5cgQoli95F+qSkpOxCTmJiIp6eng5OJCJyc2TYMmj8bWN2ROygd53eTOs2zdGRROQ6JKVZmb5qNyMebEt64lnAoESbgdTqNIButwXzwG3lqBRw5b9vxo0bx8iRIwkJCaFq1aoEBgYSFRXFmjVrSE1NpX379ixatAhnZ+eb86FEREQkX6kQISLF0vSd0xn0+yDSbek0DW7KvN7zKOWZ+4vqRd2PP/7I+vXrefrpp3PMTXH69Gm6dOnCtm3b6N27N9Om5e4C0qZNm2jatCkWi4X58+dTs2ErZm89wbTVe9n5/cukHd9FiTaD6Nz3Mfo2DaFDrdK4WIruNEYqRIhIcbb51GaaTmqK3bAz76F53FvjXkdHEpHr0L9/f3799Vc6dOnKH7NnUPqOwbg16pa9vkH5EnS7LZh76pXFz/Pi+dOOHDkCQOXKlXMsj4iI4M4772TXrl18/fXXDBs2LH8/iIiIiNwUKkSISLFiGAbvrX6PF/9+EYAHb3mQqQ9Mxd3Z3cHJCo9169bRokULXF1diY+Pz9XE3I888gjfffcd7br2pmSnJ9gUen44K7fEk+z/6jFKBgQQER6Ok1PRn/9BhQgRKe6eXfwsH637iECPQHYM20EZ7zKOjiQi12DJkiXcddddvPXWW2RkZDB27FjeeOtt6nUZyJxtJ1l1IIqsuaydnUzcXi2Qu+uW4c5apfF1v3oPh59//pl+/frRo0cPZs6cmc+fRkRERG6Gonu7qYjIf2TYMhj6x9DsIsQzzZ9hVo9ZKkJco/r16wOQlpbGmTNnrrhths3O3/si+H3pagB22oPZFBqLyQStqwXw+UMN2PHZwwQEBHAmOpq1a9fme34REXG8t9q/Rf3S9YlKjmLg3IHYDbujI4lILqWkpDBs2DBuueUWnn322ezlzk6Zc0lMGdyE9S/ewctdbqF2WR8ybAbL9kXyzKwdNHprCUOmbOLXLSc4m5Jx2WNk3ZiSmxteREREpHDQzE8iUizEp8XTY1YPFh9ejNlk5otOXzCiyQhHxyqUsrrROzs74+/vf9F6wzDYfjyOP3acZt6Ok0QnphMXnwBA+aBAHutck64Nggnydct+j7+/P9HR0ezYsYPWra9tsnARESl8XC2uTO82nYYTG7LkyBI+Xfcpz7R4xtGxRCQXXnvtNY4cOcKKFSsuWygo5e3GI60r80jryhyISGDBv6dZuPM0ByMT+XtfJH/vi8TZyUTLqgHcXbcMd9UqTQmPzH3Fxsby8ccfA9C5c+eb9rlEREQkf6kQISJF3qGYQ9w3/T72Ru/Fw9mDGd1ncE/1exwdq9D6/PPPAejUqROurq5AZvFhx4mzLPj3FAt3hnMyLiV7+5KeLthLl+J47CmG3urNY22q5Nif3W7n+PHjAISGht6cDyEiIg53S+AtfNbpMx6b/xgvLHuB1iGtaRLcxNGxROQKtm/fzqeffsrgwYNp06ZNrt5TvbQ31Tt483SH6hyMSGDhznAW7jzN/ogEVuyPYsm67cSvm4m/hzMe9kSO7d1OclIijz32GH369MnnTyQiIiI3iwoRIlKk/X30b3rM6kFMSgzB3sH8/tDvNCzb0NGxCq2FCxfy3Xff4ezszKuvjWXNoWj+3hfJol05iw+eLk7ccUtp7r+1LK2rBfJaSmfefXc7P/74I48//niOfc6YMYOUlMz3JiQk3NTP4ygmk4latWplvxYRKa6G3jaUxYcXM3vvbB6Y8QCbhm6irHdZR8cSkUuw2WwMHToUX19fPvzww+vaR7XS3jxZ2psn76zGochE/tx5mqm/H2XjrmUkXrBdqWZdcWnen4U7w2lVLSBX80qIiIhIwaZChIgUWeM3jWfUn6OwGTaaBDdhbq+5mgzzBuzdu5e+ffthGAaNeo5k4O8RJKWfyl7vca740KVuGdrWCMTN+fyk0yNGjGD8+PGsX7+eQYMG8fLLLxMQEMBff/3FiBEjsFgsWK1WzObiMXWRh4cHu3fvdnQMERGHM5lMTO46mX3R+9gdtZsHZjzAykErcbO4Xf3NInJTff7552zevJnJkydTsmTJG95f1VJejLyjGiPvqMbJNx7m7z2nmb92JysWLyBq5c98/fQmfuv1Jq5+QTSs4EeLqiVpUSWABuVL4GIpHn8zioiIFCUmwzAMR4cQEclLKRkpPLnoSb7d+i0Afev2ZdJ9k3RR4zpk2Oz8eyKOuat38tHIXqTGRuDd+H782z8CQICXK+1qBHLHLaVoU70U7i5Ol93X8uXL6d69OzExMTmW16tXj2bNmjFx4kReeOEF3nnnnXz9TCIiUvAcjjlMk0lNiEmJoX+9/vxw/w/qMSZSgISFhVG7dm0aNmzIihUrcpyfr7/+OmPHjuXdd99lzJgxN3ysNKuNj7+ZyktPDKLkLc3xuu+lHOvdnM00CvGneZWSNK9SknrBvlicVJgQEREp6FSIEJEi5eCZg/SY1YMdETswYeKdO97h+ZbP62JGLqVZbWw/FseGozFsOHqGrWFxJJ6NIfzn57HGnMCr7p20e/Q17qhZmnY1A6lT1hezOfe/27i4OGbMmMG///6L2WymadOm9OjRgwEDBjBz5kymTp1K37598/ETiohIQbXsyDI6Tu2IzbAxpuUY3r3zXUdHEpFzpkyZwuDBg6lZsyalS5fOsS40NJSwsDAqVapEhQoVaNWqFW+99dYNHc8wDHx8fEhJSWH/iWjWhZ5l3ZEzrD98hjNJ6Tm29XK10LiiH40r+dOwgh/1y5fI0TNXRERECgYVIkSkSDAMg593/szwBcNJSE8gwCOAnx/8mbuq3OXoaAVaYpqVf4/Hsf5oDBuOnGHb8TjSrfbs9fa0ZKJnvkzKqQM0bdeZ3+f8SmlfjzzNYLVaKVeuHFFRUYSGhlK+fPk83X9BlJycTOPGjQHYtGkTHh55+zsVESmsvt3yLY/OfxSAt9u/zYutX3RwIhGB84WI3OjatStz58694WOGhIRw7NgxwsPDs4sfhmFwMDKRtYeiMwsTR2I4m5KR430Ws4nawb40rOBHw5DMR5CvekaLiIg4mgoRIlLohSeG89j8x5i3fx4ArSu0Znq36QT7BDs4WcGSbrWzPzyBHSfi2HE8jh0n4jgYmch/W4EAL1eaVvanYbAnE196lA1rVtGxY0fmzZuHi4tLnuf64YcfGDRoEHfffTcLFizI8/0XRElJSXh5eQGQmJiIp6engxOJiBQcH6/9mNFLRgPweafPGdV0lIMTiciV5PXQTABHjhyhatWqeHt7ExMTg5PTpXs42OwGe0/Hs/7IGbaExbI5LJaohLSLtgsu4c6tFUrQoHwJ6pcvQZ2yvlccUlRERETyniarFpFCy27Y+X7b9zy75FliU2NxNjvzWpvXeL7V81jMxft/b6kZNg5FJrIvPIFdJ8+y40Qcu0/F5+jtkKWsrxuNK/nTtFJJmlb2p3KAJ3a7nR49erBhzSpat27Nb7/9lqsixLhx4xg3bhwPPPAA776bc0iNLVu2cNttt+UYJmvJkiWMHDkSNzc3Pvnkkxv/4CIiUug90+IZEtITGLtyLE8uepKEtARebP2ihlkUKaTuuOMOTp48yY8//kiTJk2yl3/wwQd0796dypUr59h+//79DBw4EMMwGDBgwGWLEABOZhN1gn2pE+zLI60ze0yciE1h67FYtoRlPvaejudkXAon41KY/+/p7PdVL+1Ng/K+1C+XWZyoVspLc02IiIjko+J9pU5ECq1NJzcxYuEINp3aBMBtZW5jStcp1C1d18HJbi7DMDh9NpV94fHsPZ3A3tPx7AtP4Gh0Ejb7xR3efN2dqV++BA3K+VKvXAnqlfellPfFXdXHjRvHnDlzAAgICGD48OGXPP5HH31EQEBA9s/R0dHs37+f06dPX7Rtt27dsNls1K1bF19fX/bv38+2bdtwd3fn119/pUaNGtf7axARkSLmtTavYbVbefuft3l5+cuEJ4bzWafPcDLrDmaRwubw4cOEhYWRnJycY/n48eN54YUXqF+/PlWrVsUwDMLCwtiyZQt2u53bb7/9ohtbrsZkMlHe34Py/h50bZDZOzoxzcqO43FsPx6X/RyZkMbe0/HsPR3P9I3HAXB3dqJusC/1y/tSt1wJapXxoVKAJ07XMB+aiIiIXJ4KESJSqOyK3MXYlWP5dc+vAHi7eDO27VieaPIEzk7ODk6Xv5LSrByISGBfeAL7Tsez99xzfKr1ktuX8HDmliAfapbxzuyGXq4EISU9cnVHaWxsbPbrrILEpbz++us5ChFXMmzYMObOncuGDRtITEykTJkyPProozz//PMX3QknIiLFm8lk4q32b1HKsxRPLXqKcZvGcTLhJFPun4KPq4+j44lIHnj77bdZuHAhmzdv5q+//iIlJQV/f386dOhA79696d+/P2bzjfdQ8HK10LJqAC2rnv+bNfxsamZh4tyQpf+eOEtimpWNoTFsDI3J3s7N2UzNIB9qlfWhdlkfapXxoWaQj4Z1EhERuQ6aI0JECjzDMFh9bDVfbPwiuwBhwkT/+v15/873CfIKcnDCvGW3GxyPTWbv6QT2hcez79xzWEzyRfM5QOaEfFVLeVEzyJuaZXyoGeTNLWV8KOXtqmEsCijNESEiknszds2g/5z+ZNgzqOpflZndZ3JrmVsdHUtEihC73eBIdCLbj59lx/E4dp06y77TCaRk2C7a1myCSgGe1Crrm12cqFXWhwAvVwckFxERKTxUiBCRAis8MZxf9/zKxC0T2Rm5M3t5j1o9eLXNq9QpVceB6fLG2ZQM9ocnZA+ttC88nv3hCSSnX/ylB6CUtys1y/hwS5A3Nct4UzPIhyqBXrhYNJ5tYaJChIjItVl/Yj29fu3FsbPHcHVy5b0732Nkk5EaqklE8o3NbhB6Jok9p+LZczqePafi2X0qnujEiyfDhsy/02sEeVO1lBfVSnlTrbQX1Up5UcLj6vOsiYiIFAcqRIhIgWE37OyM2Mmyo8v4ff/v/BP2DwaZ/4tyt7jTt25fRjUdVSjngUi32jkSncj+8ITM4ZVOZw6xdDIu5ZLbu1jM1Cjtnd3L4ZYgb2oEeVNSd1oVCcnJydSqVQuAPXv24OHh4eBEIiIFX0xKDIPmDuKPA38AmfNDTegygcbBjR2cTESKk8iE1BzFiT2n4zkanXTJnssAAV6uVC3lmV2cyCpUBHi5qPeyiIgUKypEiIhDpGSkEBoXyoEzB9gWvo2tp7ey7sQ6opOjc2zXNLgpvev0ZmCDgZRwK+GYsNfAZjc4HpPM/ogEDoQnZD5HJHAkKgnrJSaPBggu4c4t53o3ZPVyqFjSA4vTjfVyiIqKuqH3i4iIBAYGOjpCDoZh8M2Wb3hh2QvEpcZhwsTABgN59fZXqeRXydHxRKSYSk63svd0AociEzgYkcjByEQORSZe9qYjAG9XC+X9PQgp6UEFfw8qlPQgxN+TkJIelPF1u+HvAiIiIgWNChEickVWu5XYlFhiU2NJSk8i1Zp60SPdlp79SLOl5fg53ZZOUnoS0SnRRCdnPiISI4hIirjk8TycPbg95HbuqnwX3Wp1o4JvhZv8iXPHMAwi4tMuKjgciEggNcN+yfd4u1moUdqbaqW9swsPNYK88XXPn0m2dYeViIjcqIL6VSEiMYLRS0Yz9d+pAFjMFoY0GMKzLZ+lqn9VB6cTEcmUlGblcFTiBcWJBA5GJnLsMnO/ZbGYTQT7uWcWKPw9KOeXWZzIfLhT2tcVV4uGphMRkcJFhQiRYsxmtxEaF8qR2COEnQ0jLC4s8/lsGMfPHudMyhni0+Lz7fjeLt5U8a9C/dL1uTXoVhqVbUTj4Ma4OBWccVQNw+BMUjqHIxM5EHGu4BCeyP6IBM6mZFzyPa4WM9VKe1G9tDc1SntTPShziKUgH7ebWhxQIUJERG5UQf+qsOHEBl5d8SqLDy8GwISJztU6M7LJSDpU7qA5JESkQErNsHE8JpljMcmEncl8znydxPHYFNKtl76x6UIBXi4E+boR5ONO2RJuBJ0rVJTydqOklwslPV3x83BWzwoRESkwVIgQKQYMw+DY2WPsitzF7qjd2c97ovaQak3N1T58XH3wdvHGzeKW4+FqccXVyRUXJ5fsx39/9nD2IMAjgJIeJQnwCCDAI4AQ3xD83f0LzMXy5HQrR6OTOBqdxJGoc8/RSRyJSiQh1XrJ9ziZTVQK8MwsNpT2pkaQFzWCfKjg74GT2fGfq6D8bkVEpPAqLF8V/gn7h3dXv8ufh/7MXhbkFUTPWj3pVacXTYObqighIoWC3W4QkZB6vkBxJplTZ1M4HZdKeHwqp+JSSMtFoQLAZAI/DxdKerpkFie8XAnwzHwu6eWCn4cLvu7O2Q8fd2e8XS2YC8B3GRERKXpUiBApYmJTYtkZuZN/I/5lZ8ROdkbuZFfkLhLSEy65vZvFjcp+lQnxDcl8lMh8ruBbgUDPQPzd/SnhVgKL2XKTP0neMgyD6MR0TsalcCI2mZOxKRyLSc4uPpw+e/mCjMmUOY9DVu+GGqUzJ46uHOhZoLtEqxAhIiI3qrB9VTh45iBfbfqKH3f8SGxqbPbyAI8AOlftzN3V7qZjlY74ufs5MKWIyPUzDIO45AxOn00lPD6FU3GphJ9N5fTZVE6fTSE6MY0zienEJKdfcfinyzGZMuev8PVwzlmkcLugWOFmwdPFgqerE56uFjxcLHi5nvvZxYKnqwUXi3piiIhITipEiBRChmEQlRzFoZhDHIo5xJ6oPZmFh8idnIg/ccn3OJudqRlQk9qlalM7sDZ1StWhdmBtKvtVLvR3CNrsBmcS04hMSCMqIY3IhFQi49M4HZ/KidgUTsYmczIu5bJzN2Tx83CmcqAXlQI8qRTgSZVATyoFeBFS0gM358L3Oyqqk1VHR0dffaMCLjk5mUaNGgGwefNmPDw8HJxIROTSAgICHB3huqTb0ll5fCW/HfyNJWFLiE8/P9Sk2WSmTkAdmgQ1oUlQE5qWaUoZrzIOTCtSMBS0yenlxtjsBrHJ6ZxJTOdMYhrRSelEJ6RxJimzUBGdmEZccgbxqRmcTcl8XO370rVwcTLjca4w4eVqwcPVKbNY4XLBa1cLni5O2YUMjwsKGR4umUWOrOKGu7OTemqIiBRyKkSIFECGYRCTEsPJhJOcSjjFyfiTHI07ysGYg9nFhyvN3RDiG0K90vWoW6pu5nPpulTzr4azU/5MipxXDMMgJcNGYpqVpDQbZ1MyiE1O52xyBnHJ6cQmZ/6BnPU6+lzx4UxiGvZc/J/MZILS3m4E+7lT7tyjUkBm4aFygCd+ngVnbgq5PPX0EBGRa2IGygPVgWpAqUtsEwccB04Bp4FwIHejV4oUGbo0IGnWzO9g8SnWc8/nixQXvk5Kt5KYZiM5zZr53S098/tbUpo118NGXSuTCTycnfA4V7zwvKCocaWChqdL5nu8XM+vzyqCqNeGiMjNpUKEyE2UlJ5EZFIkkUmRRCVHZb+OSIzILjpkPdJsaVfclwkT5X3LU9W/KjVK1sguOtQpVQdfN9+rZjEMA7sBdsPAZjcwDLAZBnbDwG7PXGezZ65Lt9pJt9lzPGece047tyzjwm0us31ahp2kdCvJ6Zl/pCalW0lOyyw8JKfbSEq3Xlf3YQCzCUp6uVLKO+vhRmlfN8qVyCw4BPu5U8bXXX9sFgEqRIiIyA3xASqQWZyoAJQms1jxXzFkFiROn3tEAWdvUkYRB9ClAckLGTY7yWm2c8UJa/Z3vcybzawkZX0XzFp3btusbZLz8Dvi1bhYzDkKE96uFrzcMl97nSteeLk64+nqlDkclev5QobXueGpspY7a1JwEZGrUiFCboqsi942+7kL3Rf8bJy7EJ51UTzHhXG7gc3I2ubqF80Nwzi3PHOSr0sdL/tnOxftO2t/NoPsXJnbXPDec8ez2u2k21NJTI8lMSOW+PQzJGWcISHjDEnWWJIyzpBkjSHJGkOyNYYUWyxW49purXMxlcDNHHDuEYS7KRh3UzBuprK4mMpgxuWiXOc/06V+V+d+h+c+U0FlMoGniwVfd2dKeGQ9XChx7mc/Dxd83J0J9HIl0NuVUj6ulPR0LRATREv+UyFCRETylAtQ7twjCCgDXG4KiXQgmsyixIXPsYAt35OK5CtdGpCCKKvXfFKajeT084WNpHO96DNvbjtf4LiwoJHVSyMp3Xbu58z35+UQVFlcs4oa5woUXm45e19451ieWeC48LWnqxPe554tKmqISBGlQsQN+GFtKMv3R2b//N/f5H9/sVf6VV/8XuPK6691+4sOmPPH7ALABRfgsy/m5+KC/6ULBOdf59W/snCXZ0k3h2LCDDgBZkw4gXHuGSdMOGHCGbBgMpwwYQGczy23gHHB66zlRtZrMLBimKwYWIEMDDKwm1IxSMJuSsZOEnZTEnaSwWS95s9gMlwwG744UQInwxezkfnsZPjjZJTEiZJYDH+cDP9zn8OxnMwmXJzMuFjMODuZcbVkvnZxMuNsOb/OxeJ07vWFyzLf42Ix43ruOUd3WdcLJjnL6jrr6oS7s5MuNstl6d+GiIjkO3fOFyWynv3J/PPzUgwgnsyCRNwFzwlAEpAIJHOJP8odzAzn/mw+/2wBTEAamb1CpNjQpQEpLrJ6bSSkZZCUZiMxLYPENBuJqZnFioQLemwkplkvuTwpzUpCav4MReXsZMLV4pT93dvVYsbV4pT9+nLLnJ3MmE0mnMzgZDZnPptM2a/NZhMWs+ncNudem03ntsl8mE2Zy8ymzPeaTOdeX2WdyZT1fjK3M5kwm89vl2Pdf/aRte5S+7hwnYgUfhZHByjMDkQksGJ/0ZwM1hFM5xqbzMbogobORHbjGGlPwyDl4u9wDmyTzCYLnhY/vJxL4uXsj7ezP97OAfi4nn/2dSmJr2sAvi4BeDh7Zn62rD8ALmyIsxrwCz531h8S55dnNujmyzTSWb+7yzX4F+3bZMJ07g+EHPs+999BDb4UNJGRkVffqIBLSkrKMVm1p6engxOJiMjVZNgyCI0P5UDsAQ7GHsx+Phh7kGRrMviS+bgMs8lMgHsAJd1K4uPqg4+LD94u3vi4ZL52d3bH2eyMi5NL9rOL2QUXp8w5rGyGDZvdht2wZ74+98iwZZBiTSHFmkJyRjLJ1mSSM5LPL7Oee52RQqotlRRrCqnWVFJtqVjtl7+ppnOlzvzQ+Yc8/i2KiDies5MZXw8zvh43fuNfhs2eXZRISs8sWiT+p1iRo9iRVcz473ZpVtLPFTUybAYZNiuJVx6tudi53PWPS10byb6OlPW4oNhy4bKs4syllmWvu7BQc0Exx3KZZRfu02wyYXHKuc7pMsucnM6tO7fMBNnPWddmMl+fW3fumg0XvDaZMofxNp97Tfbr8/sxn3tT1nsvrEFnvc662fn8z1nrjeyfz7/vctue35dhZP5sNy4zcskFI3xkj1RywcgplxrdJDejghjZN09n7scga8SWC5b9d5sL1tmNi7dvUSWA7g3L3dC/5eJMPSJuwJawWI5GJ+VY9t9Ltv+9hnvRzxe842rXe/97Qfiqx/rPFhevz7nuUhezL/yf+IVV7v8WC650odxkuvAi93+q6f/Z99WcSjhFqjXzS5PVbsVmt51/fe6LWIY9g3RbOhm2zOd0W/oVl1243G7YcbW4Zn7xO/dwNjvj5eKFr5svvq6++Lr5UsKtRPZrLxcvzCZ1nRQREREpjgzDIDIpkqNxRzkae5QjsUc4GneUsLNhhCeGE5EYQXRy9EU9mAsaN4sb7hZ3XC2uWMwW7qp8F991/c7RsUREio10a2ZRI9VqIy3j3HyMVjtpVttFr7Me2csy7NlDS9vtBtYLhqrOukCbtd52wTqr7fw21nMXcS8c8SJraOdLjYZx4bDP/x0y+pJDZF9mnUhh0q9ZBd66v66jYxRaKkSIiIiIiIjkI6vdSlRSFOGJ4UQnR3M27SxnU89mP8elxpFqTSXdnp59o0zWI82aeUusk9kJJ5PTRc/OTs54Onvi4eyR/ezh7IGnywWvnT1xd3bHw9kDd4s77s7uOZ7dLG7qBSsiIg5xtTlFrzRE+EXr7DnnHrWfmxPUardn30lvs9ux2Tn/fKll9qzCzn+XXWH7c8fKuYxzhaFLL7Ofy3bhcbLWGQA57uQ/fwf/hb+3rB4H9nNvMIzMXglZ2xrG+WXGuX1lrctq+rNuZM7sUXFuWVbPiaz/UKYcT5m9LC6xLOfP59+c1WPl4pE8/nOzctaIHReO4vGf4cGc/jvM1wWji1x8QzTZw4hlHeP8zdhZvUkuXJ+1/fmeNRduX6uML62qBdzwv/viSoUIERERERERERERERHJNxpPRkRE5CZLSUmhbdu2tG3blpSUFEfHERERERERERHJV+oRISIicpMlJSXh5eUFQGJioiarFhEREREREZEiTT0iREREREREREREREQk36gQISIiIiIiIiIiIiIi+UaFCBERERERERERERERyTcqRIiIiIiIiIiIiIiISL5RIUJERERERERERERERPKNxdEBREREiiMPDw9HRxARERERERERuSlMhmEYjg4hIiIiIiIiIiIiIiJFk4ZmEhERERERERERERGRfKNChIiIiIiIiIiIiIiI5BsVIkRERG6y1NRUunTpQpcuXUhNTXV0HBERERERERGRfKU5IkRERG6ypKQkvLy8AEhMTMTT09PBiURERERERERE8o96RIiIiIiIiIiIiIiISL5RIUJERERERERERERERPKNChEiIiIiIiIiIiIiIpJvVIgQEREREREREREREZF8o0KEiIiIiIiIiIiIiIjkG0tuNjIMg/T09PzOIiIiUiykpaXh6uqa/dpiyVVzLCIiIiIiIiJS4Li4uGAyma64jckwDONqO0pLS+O9997Ls2AiIiIiIiIiIiIiIlL4jRkzJvuGy8vJVSGiuPeICA8PZ8qUKQwaNIigoCBHxxEp0HS+iOSOzhWR3NP5IpJ7Ol9Eckfnikju6XwRyb3ier7kpkdErsaCMJlMV61oFGUuLi7Zz8X59yCSGzpfRHJH54pI7ul8Eck9nS8iuaNzRST3dL6I5J7Ol8vTZNUiIiIiIiIiIiIiIpJvVIjIBS8vL9q0aYOXl5ejo4gUeDpfRHJH54pI7ul8Eck9nS8iuaNzRST3dL6I5J7Ol8vL1RwRIiIiIiIiIiIiIiIi10M9IkREREREREREREREJN+oECEiIiIiIiIiIiIiIvlGhQgREREREREREREREck3KkSIiIiIiIiIiIiIiEi+USFCRERERERERERERETyTbErRJw8eZLPPvuMu+66iwoVKuDi4kJQUBDdunVjw4YN17Qvu93OuHHjqFevHu7u7gQGBtKzZ08OHjyYT+lFbp68OldWrFiByWS67GP9+vX5+ClEbo64uDhGjRpF8+bNCQoKwtXVleDgYNq3b8/s2bMxDCPX+1LbIkVdXp0val+kOPrggw+u+9+42hcpbq73fFH7IsVBxYoVL/tvfNiwYbnej9oWKQ7y4nxR25LJ4ugAN9uXX37J+++/T5UqVejQoQOlSpXi4MGDzJ07l7lz5zJ9+nR69uyZq30NGzaMb7/9llq1ajFy5EgiIiKYMWMGixcvZu3atdSqVSufP41I/snLcwWgTZs2tG3b9qLl5cqVy8PUIo4RHR3N5MmTadasGffffz/+/v5ERkbyxx9/0L17d4YOHcrEiRNztS+1LVLU5eX5AmpfpPjYu3cvr776Kp6eniQlJV3z+9W+SHFyo+cLqH2Ros/X15ennnrqouWNGjXK9T7UtkhxkRfnC6htwShmZs+ebaxateqi5atWrTKcnZ0Nf39/IzU19ar7+fvvvw3AaN26dY7tly5daphMJuP222/P09wiN1tenSvLly83AOO1117Lh5QiBYPVajUyMjIuWh4fH2/UqlXLAIxdu3ZddT9qW6Q4yKvzRe2LFCdWq9Vo3Lix0aRJE6Nfv34GYKxbty7X71f7IsXJjZ4val+kOAgJCTFCQkJuaB9qW6S4yIvzRW1LpmI3NNODDz5I69atL1reunVr2rVrR0xMDDt37rzqfr799lsA3nrrLVxdXbOX33HHHXTs2JFVq1Zx4MCBvAsucpPl1bkiUhw4OTlhsVzcydDb25uOHTsCcOjQoavuR22LFAd5db6IFCfvv/8+O3bsYPLkyTg5OV3z+9W+SHFyo+eLiOSO2hYRuVbFbmimK3F2dga45Jfj/1qxYgWenp60bNnyonUdO3Zk0aJFrFy5kurVq+d5ThFHu5ZzJcvBgwf54osvSE5OJiQkhA4dOhAQEJBfEUUKhNTUVP7++29MJlOuuiWrbZHi7FrPlyxqX6So27VrF2PHjuXll1+mdu3a17UPtS9SXOTF+ZJF7YsUdWlpafzwww+cPHkSPz8/WrRoQf369XP9frUtUpzc6PmSpbi3LSpEnHPs2DGWLl1KUFAQdevWveK2SUlJnD59mjp16lzyDotq1aoBaHIeKZKu5Vy50LRp05g2bVr2z+7u7owdO5Znn302P2KKOERcXByfffYZdrudyMhIFi5cyPHjx3nttdey24bLUdsixc2NnC8XUvsiRZnVamXQoEHccsstjBkz5rr2ofZFiou8OF8upPZFirrw8HAGDRqUY1mnTp346aefrnphVG2LFDc3cr5cqLi3LcVuaKZLycjIoH///qSlpfHBBx9ctfvm2bNngcyJSi7Fx8cnx3YiRcW1nisAgYGBfPjhh+zdu5ekpCROnjzJ1KlT8ff357nnnuObb765CclFbo64uDjGjh3Lm2++yTfffEN4eDgffvghr7322lXfq7ZFipsbOV9A7YsUD++88072EDNZPVKvldoXKS7y4nwBtS9SPAwZMoQVK1YQFRVFfHw869evp3PnzixatIj77rsPwzCu+H61LVKc3Oj5Ampbsjl6kgpHs9ls2RNYDR06NFfvOXnypAEYLVu2vOT6VatWGYDx6KOP5mVUEYe6nnPlSnbu3Gm4uLgYpUuXNmw2Wx4kFCk4rFarcfToUePdd981XFxcjAceeOCSk/NeSG2LFFfXc75cidoXKSq2b99uODs7G2PGjMmxfODAgdc0+a7aFykO8up8uRK1L1LU2Ww2o1WrVgZgzJ8//4rbqm2R4u5azpcrKW5tS7HuEWEYBkOHDmXq1Kn069ePCRMm5Op9WRXfy1V24+Pjc2wnUthd77lyJXXq1KFp06ZERERoUlIpcpycnKhYsSJjxozhrbfeYs6cOdmTuV2O2hYprq7nfLkStS9SVAwcOJAqVarw+uuv39B+1L5IcZBX58uVqH2Ros5sNjN48GAA1qxZc8Vt1bZIcXct58uVFLe2pdgWIux2Ow8//DCTJ0+md+/eTJkyBbM5d78OT09PypQpw9GjR7HZbBetzxoD71rGNxYpqG7kXLmarHH0kpOT82R/IgXRXXfdBWRO5nYlaltEcn++XI3aFykKduzYwb59+3Bzc8NkMmU/fvjhBwCaN2+OyWRi7ty5V9yP2hcpDvLqfLkatS9S1OX237jaFpG8axOKU9tSLCerttvtPPLII3z//ff06tWLn376KVdj3V+oTZs2/PLLL6xZs4bbb789x7q//vorexuRwiwvzpXLsVqtbN26FZPJRIUKFfJknyIF0alTpwCwWK7e5KptkeLuWs6Xy1H7IkXFww8/fMnlq1at4uDBg9x3330EBgZSsWLFq+5L7YsUdXl5vlyO2hcpDjZs2ACgtkUkF67lfLmcYte2OHpsqJvNZrMZgwYNMgCjR48eVx2DOCoqyti7d68RFRWVY/nff/9tAEbr1q2NtLS07OVLly41TCaTcfvtt+dLfpGbJa/OlbVr1xp2uz3HsoyMDOOpp54yAKNTp055nl3kZtu2bZsRFxd30fIzZ84YDRo0MADjp59+yl6utkWKs7w6X9S+SHF1pTHv1b6I5HQ954vaFynqdu/ebcTGxl60/J9//jHc3NwMV1dXIywsLHu52hYpzvLqfFHbkqnY9Yh44403mDJlCl5eXlSvXp233nrrom3uv/9+GjRoAMC4ceMYO3Ysr732Wo7xJtu1a8cjjzzCpEmTuPXWW+nSpQsRERHMmDEDHx8fvv7665v0iUTyR16dK71798ZkMtGiRQuCg4OJi4tj1apV7N+/nwoVKuTJfBMijjZlyhQmTZpEu3btCAkJwdPTk7CwMBYsWEBiYiLdunWjT58+2durbZHiLK/OF7UvIhdT+yKSe2pfpLiaOXMmH3zwAXfccQcVK1bE1dWVXbt2sXjxYsxmMxMmTMhxZ7baFinO8up8UduSqdgVIkJDQwFITEzk7bffvuQ2FStWzL64eiXffPMN9erV45tvvuGLL77Ay8uLe++9l7fffpvq1avnYWqRmy+vzpXHH3+cRYsWsWLFCqKjo7FYLFStWpWXXnqJZ555Bj8/vzxOLnLzde/enbNnz7J+/XpWrVpFcnIy/v7+tGrVigEDBvDQQw9hMplytS+1LVLU5dX5ovZF5NqofRHJHbUvUtS1a9eOvXv3snXrVlauXElqaiqlS5emV69ePP300zRp0iTX+1LbIkVdXp0valsymQzDMBwdQkREREREREREREREiiazowOIiIiIiIiIiIiIiEjRpUKEiIiIiIiIiIiIiIjkGxUiREREREREREREREQk36gQISIiIiIiIiIiIiIi+UaFCBERERERERERERERyTcqRIiIiIiIiIiIiIiISL5RIUJERERERERERERERPKNChEiIiIiIiIiIiIiIpJvVIgQEREREREREREREZF8o0KEiIiIiIiIiIiIiIjkGxUiREREREREREREREQk36gQISIiIiIiIiIiIiIi+eb/naZSt0E+QJIAAAAASUVORK5CYII=",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(figsize=(20, 6))\n",
"az.plot_posterior(\n",
" result_normal.idata,\n",
" var_names=[\"beta_z\"],\n",
" coords={\"covariates\": [\"T_cont\"]},\n",
" ax=ax,\n",
" label=\"Normal\",\n",
")\n",
"az.plot_posterior(\n",
" result_spike_slab.idata,\n",
" var_names=[\"beta_z\"],\n",
" coords={\"covariates\": [\"T_cont\"]},\n",
" ax=ax,\n",
" color=\"green\",\n",
" label=\"spike and slab\",\n",
")\n",
"ax.axvline(3, color=\"black\", linestyle=\"--\", label=\"True value\");"
]
},
{
"cell_type": "markdown",
"id": "057b4f5d",
"metadata": {},
"source": [
"This plot suggests that the spike and slab prior was better able to ignore noise in the process and zero in on the true effect. This will not always work but it is a sensible practice to at least sensitivity check difference between the estimates under different prior settings. We can observe how aggressively the spike and slab prior worked to cull unwanted variables from each model by comparing the values on the coefficients across each model"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "127888b7",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAzAAAALLCAYAAAAmKmd1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdYU9f/B/D3JWwQGYogaEDFjaMOXAhui6KIWEdduLr8WmerdQDuXaxttbYqtSpOxFlHFRAVkVZcrRMFt6C4qiIknN8f/JIaExQQDcj79Tw8mnPPPfdzLwnJJ/cMSQghQEREREREVAwY6DsAIiIiIiKivGICQ0RERERExQYTGCIiIiIiKjaYwBARERERUbHBBIaIiIiIiIoNJjBERERERFRsMIEhIiIiIqJigwkMEREREREVG0xgiIiIiIio2GACQ1SEhYWFQZIk9Y+hoSGcnZ0RGBiIGzdu6Du8t+rmzZsIDg7GiRMn3vmx79y5g/Hjx8Pd3R2WlpYwNTWFm5sbvvzyS1y8ePGdx/OuqZ53ycnJ+g4lV/fu3cOECRNQs2ZNmJubw8rKCk2aNMEPP/yArKysAre7a9cuBAcHF16gRZSLiwskSYK3t7fO7atWrVL/3YmOji604wYHB0OSpALtO3DgQLi4uBRaLERUfBnqOwAier2VK1eievXqePbsGQ4ePIhZs2YhJiYGp0+fhoWFhb7Deytu3ryJkJAQuLi4oF69eu/suMeOHUPnzp0hhMDw4cPRtGlTGBsb4/z581i9ejUaN26M+/fvv7N49KFTp06Ii4uDo6OjvkPR6dy5c2jfvj3+/fdfjBkzBs2aNcOzZ8+wY8cOfPnll9i4cSN27doFc3PzfLe9a9cu/PDDDyUiiSlVqhQOHjyIpKQkVK5cWWPbihUrYGVlhUePHukpOiKi3DGBISoGateujYYNGwIAWrVqBaVSiWnTpiEyMhIff/zxG7X97NkzmJmZFUaYxcKzZ89gamqq81vgR48eoWvXrjA1NcWRI0fg7Oys3ubt7Y1PPvkEmzZtepfhvlOqa1O2bFmULVtW3+HopFQq0b17dzx69AjHjh1D1apV1dt8fHzg5eWFXr16YfTo0Vi6dKkeIy36WrRogdOnT2PFihWYMWOGujwpKQkHDx7EkCFD8PPPP+sxQiIi3diFjKgYatKkCQAgJSUFABASEgIPDw/Y2trCysoKH3zwAZYvXw4hhMZ+Li4u6Ny5MyIiIlC/fn2YmpoiJCQEAPDDDz+gZcuWsLe3h4WFBdzd3TF37lyt7jje3t6oXbs24uLi0KxZM5iZmcHFxQUrV64EAOzcuRMffPABzM3N4e7ujt27d2vFf/HiRfTp0wf29vYwMTFBjRo18MMPP6i3R0dHo1GjRgCAwMBAdVeWF78V//PPP9GlSxfY2trC1NQU9evXx4YNGzSOo+oKtXfvXgwaNAhly5aFubk5nj9/rvO6/vzzz7h9+zbmzp2rkby8KCAgQOPxtm3b0LRpU5ibm6NUqVJo164d4uLiNOqous2cOnUKPXr0QOnSpWFra4vRo0dDoVDg/Pnz6NixI0qVKgUXFxfMnTtXY//o6GhIkoTVq1dj9OjRcHBwgJmZGby8vJCYmKhR988//0SvXr3g4uKi/t307t1b/VzJy7XR1YUsMTERnTt3Vv/Oypcvj06dOuH69evqOhkZGZgwYQJcXV1hbGwMJycnfPHFF3jw4IHGsVXPw927d+ODDz6AmZkZqlevjhUrVui85i/asmUL/vnnH4wfP14jeVHp2bMn2rdvj+XLl+P27dsa1+/lrlDJycmQJAlhYWEAcrooqZ6HL3bdVF2H7OxsLF68GPXq1YOZmRmsra3RpEkTbNu2Td1mdnY25s6di+rVq8PExAT29vbo37+/xnUC3s3r6HUMDAzQv39//Prrr8jOzlaXr1ixAhUqVEDbtm117peX57zqHOrVqwcTExO4urpi/vz5OtsTQuDHH39UX1cbGxsEBATg8uXLeT4XIiphBBEVWStXrhQAREJCgkb5okWLBACxbNkyIYQQAwcOFMuXLxf79u0T+/btE9OmTRNmZmYiJCREYz+5XC4cHR1FpUqVxIoVK0RUVJQ4duyYEEKIUaNGiSVLlojdu3eLAwcOiG+//VaUKVNGBAYGarTh5eUl7OzsRLVq1cTy5cvFnj17ROfOnQUAERISItzd3UV4eLjYtWuXaNKkiTAxMRE3btxQ7//333+L0qVLC3d3d7Fq1Sqxd+9eMWbMGGFgYCCCg4OFEEI8fPhQfe6TJk0ScXFxIi4uTly7dk0IIcSBAweEsbGx8PT0FOvXrxe7d+8WAwcOFADEypUrta6fk5OTGDZsmPj999/Fpk2bhEKh0Hm927dvL2Qymfj333/z9PtZs2aNACDat28vIiMjxfr160WDBg2EsbGxiI2NVdcLCgoSAES1atXEtGnTxL59+8RXX30lAIjhw4eL6tWri++++07s27dPBAYGCgBi8+bN6v2joqIEAFGhQgXRtWtXsX37drF69WpRpUoVYWVlJZKSktR1N27cKKZMmSK2bNkiYmJixLp164SXl5coW7asSEtLy9O1UW27cuWKEEKIf//9V9jZ2YmGDRuKDRs2iJiYGLF+/Xrx6aefin/++UcIIUR2drbo0KGDMDQ0FJMnTxZ79+4V8+fPFxYWFqJ+/foiIyNDfWy5XC6cnZ1FzZo1xapVq8SePXtEjx49BAARExPzyms+bNgwAUCcPXs21zo//vijACDCw8M1rl9UVJRGvStXrmg8Zy5duiQCAgIEAPVzLi4uTh17v379hCRJYsiQIWLr1q3i999/FzNmzBCLFi3Sim/48OFi9+7dYunSpaJs2bKiQoUKGtf/XbyOXkUul4tOnTqJS5cuCUmSxK5du4QQQigUCuHk5CSmTJkiNm7cqHXd8vqc/+OPP4RMJhMtWrQQERERYuPGjaJRo0aiYsWK4uWPHkOHDhVGRkZizJgxYvfu3WLt2rWievXqoly5cuL27dvqegMGDBByufy150ZE7z8mMERFmOqD5NGjR0VWVpZ4/Pix2LFjhyhbtqwoVaqUxpu7ilKpFFlZWWLq1KnCzs5OZGdnq7fJ5XIhk8nE+fPnX3lcVRurVq0SMplMpKenq7d5eXkJAOLPP/9Ul927d0/IZDJhZmam8SHrxIkTAoD47rvv1GUdOnQQzs7O4uHDhxrHHD58uDA1NVUfKyEhQSshUalevbqoX7++yMrK0ijv3LmzcHR0FEqlUuP69e/f/5Xn+2K7Dg4OeaqrVCpF+fLlhbu7u/p4Qgjx+PFjYW9vL5o1a6YuUyUwCxYs0GijXr16AoCIiIhQl2VlZYmyZcsKf39/dZnqA/gHH3yg8ftMTk4WRkZGYsiQIbnGqVAoxL///issLCw0Pmi/6tq8nMD8+eefAoCIjIzM9Ti7d+8WAMTcuXM1ytevX6+RbAuR8zw0NTUVKSkp6rJnz54JW1tb8cknn+R6DCGE6NixowCgkRC97PfffxcAxJw5c4QQeU9ghBDiiy++0PqALYQQBw8eFADExIkTcz3u2bNnBQDx+eefa5THx8cLAOKbb75Rl72r11FuVAmMKpaAgAAhhBA7d+4UkiSJK1euaCUw+XnOe3h4iPLly4tnz56pyx49eiRsbW01rm9cXJzO18a1a9eEmZmZ+Oqrr9RlTGCISIVdyIiKgSZNmsDIyAilSpVC586d4eDggN9//x3lypUDABw4cABt27ZF6dKlIZPJYGRkhClTpuDevXtITU3VaKtOnTo6u94kJiaiS5cusLOzU7fRv39/KJVKXLhwQaOuo6MjGjRooH5sa2sLe3t71KtXD+XLl1eX16hRA8B/Xd0yMjKwf/9+dOvWDebm5lAoFOofHx8fZGRk4OjRo6+8FpcuXcK5c+fUY39ebuPWrVs4f/68xj7du3d/ZZsFcf78edy8eRP9+vWDgcF/f0otLS3RvXt3HD16FE+fPtXYp3PnzhqPa9SoAUmS8OGHH6rLDA0NUaVKFa0uXwDQp08fjbE7crkczZo1Q1RUlLrs33//xddff40qVarA0NAQhoaGsLS0xJMnT3D27FmtNvNybapUqQIbGxt8/fXXWLp0Kf755x+tOgcOHACQ0w3rRT169ICFhQX279+vUV6vXj1UrFhR/djU1BRVq1bVed75Jf6/62RBZ7vS5ffffwcAfPHFF7nWUf0eXr4GjRs3Ro0aNbSugT5fRy8aNGgQtm3bhnv37mH58uVo1aqVztm+8vqcf/LkCRISEuDv7w9TU1N1vVKlSsHX11ejzR07dkCSJPTt21fjPBwcHFC3bt1CnQGNiN4fTGCIioFVq1YhISEBiYmJuHnzJk6dOoXmzZsDyJk1q3379gByxnAcPnwYCQkJmDhxIoCcgdkv0jWz1NWrV+Hp6YkbN25g0aJFiI2NRUJCgro//ctt2NraarVhbGysVW5sbAwg5wMXkDP1rUKhwOLFi2FkZKTx4+PjAwC4e/fuK6/FnTt3AABjx47VauPzzz/X2UZeZ9OqWLEi0tLS8OTJk9fWvXfvXq5tly9fHtnZ2Vqzlem6Pubm5hof8lTlqmv2IgcHB51lqliAnCTn+++/x5AhQ7Bnzx4cO3YMCQkJKFu2rNbvMbf4X1a6dGnExMSgXr16+Oabb1CrVi2UL18eQUFB6jFS9+7dg6Ghodbgf0mStGIEADs7O63jmJiY6IzxRaqk58qVK7nWUY1ZqVChwmvPLa/S0tIgk8l0/g5UXvecePka6PN19KKAgACYmpri22+/xfbt2zF48OACnZ/qOX///n1kZ2fn+nx90Z07dyCEQLly5bTO5ejRo/k6DyIqOTgLGVExUKNGDfUsZC9bt24djIyMsGPHDo0PwpGRkTrr6/pWOjIyEk+ePEFERATkcrm6vLDXYLGxsYFMJkO/fv1y/Sbb1dX1lW2UKVMGADBhwgT4+/vrrFOtWjWNx3n9Jr5Dhw7Yu3cvtm/fjl69er2yruoD+K1bt7S23bx5EwYGBrCxscnTcfNKNSj95TJVLA8fPsSOHTsQFBSE8ePHq+s8f/4c6enpOtvM67Vxd3fHunXrIITAqVOnEBYWhqlTp8LMzAzjx4+HnZ0dFAoF0tLSNJIYIQRu376tnpThTbVr1w7Lli1DZGSkxjm+KDIyEoaGhuo1TlSvi5cnb8jPh+OyZctCqVTi9u3buSZ9Lz4nXp4E4ubNm+rn7psqjNfRi8zNzdGrVy/MmjULVlZWub6u8vqcF0JAkqRcn68vKlOmDCRJQmxsLExMTLTq6yojIuIdGKJiTrXApUwmU5c9e/YMv/32W77aADQ/LAghCn0KVXNzc7Rq1QqJiYmoU6cOGjZsqPWj+pCkiuXlb+SrVasGNzc3nDx5Uuf+DRs2RKlSpQoU3+DBg+Hg4ICvvvoq14VCIyIi1HE4OTlh7dq1GrO9PXnyBJs3b1bP0lSYwsPDNY6VkpKCI0eOqD+oS5IEIYTWh75ffvkFSqWyUGKQJAl169bFt99+C2traxw/fhwA0KZNGwDA6tWrNepv3rwZT548UW9/U926dUPNmjUxe/Zsra6NALB+/Xrs3bsXQ4YMUX/br+oOderUKY26L84eppLb807VzW/JkiW5xta6dWsA2tcgISEBZ8+eLbRrkJ/XUV599tln8PX1xZQpU7TuCKrk9TlvYWGBxo0bIyIiQuNO4uPHj7F9+3aNNlVrLt24cUPnebi7u+frPIiKGm9v70JfEJZ4B4ao2OvUqRMWLlyIPn36YNiwYbh37x7mz5+fr28u27VrB2NjY/Tu3RtfffUVMjIysGTJkreyYOOiRYvQokULeHp64rPPPoOLiwseP36MS5cuYfv27eqxFJUrV4aZmRnWrFmDGjVqwNLSEuXLl0f58uXx008/4cMPP0SHDh0wcOBAODk5IT09HWfPnsXx48excePGAsVWunRpbN26FZ07d0b9+vU1FrK8ePEiVq9ejZMnT8Lf3x8GBgaYO3cuPv74Y3Tu3BmffPIJnj9/jnnz5uHBgweYPXt2YV42AEBqaiq6deuGoUOH4uHDhwgKCoKpqSkmTJgAALCyskLLli0xb948lClTBi4uLoiJicHy5cthbW1d4OPu2LEDP/74I/z8/FCpUiUIIRAREYEHDx6gXbt2AHKeQx06dMDXX3+NR48eoXnz5jh16hSCgoJQv3599OvXrzAuAWQyGTZv3ox27dqhadOmGDNmDJo2bYrnz59j+/btWLZsGby8vLBgwQL1Pg4ODmjbti1mzZoFGxsbyOVy7N+/X52Mvkj1gXnOnDn48MMPIZPJUKdOHXh6eqJfv36YPn067ty5g86dO8PExASJiYkwNzfH//73P1SrVg3Dhg3D4sWLYWBggA8//BDJycmYPHkyKlSogFGjRhXKNQDy/jrKq3r16uV611YlP8/5adOmoWPHjmjXrh3GjBkDpVKJOXPmwMLCQuNuYPPmzTFs2DAEBgbizz//RMuWLWFhYYFbt27h0KFDcHd3x2effZavcyEqyVTLDbz3i/HqZ+4AIsqL3KZRftmKFStEtWrVhImJiahUqZKYNWuWWL58ucZMUkJozjz0su3bt4u6desKU1NT4eTkJMaNG6eezenF2Zu8vLxErVq1tPbPrW0A4osvvtAou3Llihg0aJBwcnISRkZGomzZsqJZs2Zi+vTpGvXCw8NF9erVhZGRkQAggoKC1NtOnjwpPvroI2Fvby+MjIyEg4ODaN26tVi6dKm6Tl6v38tu374tvv76a1GrVi1hbm4uTExMRJUqVcQnn3wiTp8+rVE3MjJSeHh4CFNTU2FhYSHatGkjDh8+rFFHNQvZi9PoCpEzq5KFhYXW8V++xqpZtH777TcxYsQIUbZsWWFiYiI8PT01ZrESQojr16+L7t27CxsbG1GqVCnRsWNHcebMGSGXy8WAAQPydG1enoXs3Llzonfv3qJy5crCzMxMlC5dWjRu3FiEhYVp7Pfs2TPx9ddfC7lcLoyMjISjo6P47LPPxP379zXq5fZc8fLyEl5eXlrluty9e1eMHz9eVK9eXZiamgpLS0vRuHFj8f3334vMzEyt+rdu3RIBAQHC1tZWlC5dWvTt21c9u9qLs5A9f/5cDBkyRJQtW1ZIkqRxHZRKpfj2229F7dq1hbGxsShdurRo2rSp2L59u3p/pVIp5syZI6pWrSqMjIxEmTJlRN++fdVTgL94ru/qdaTLq/4WqOiaRlmIvD3nhRBi27Ztok6dOsLY2FhUrFhRzJ49W/1aeNmKFSuEh4eHsLCwEGZmZqJy5cqif//+Gs9vzkJGxZFqxsGXX0dvCwCdr7H3jSTESyvdERFRkRIdHY1WrVph48aNWgtpEhFR0eXt7Y2YmBhERUWpu/u+Taou4e/7x3uOgSEiIiIiomKDCQwREREREXLuYKjuYmzevBktW7aEtbU1JElST9FeUOfOnUOPHj1QpkwZmJmZoUGDBtiwYYPOurdv38bixYvRoUMHuLi4wNTUFDY2NvDy8tI5SU9wcLDGrJKq81D9vGnsRQ0H8RMRFXHe3t7vfXcAIqKiZM6cORg/fjzKlSuHqlWrvnEC8Ndff6mTjKpVq+Lq1as4fvw4evbsiczMTPTt21ej/i+//ILJkyfDzMwM5cuXh7u7O1JTU3Hw4EEcPHgQR44c0ZgVsWLFimjevDkOHz4MAOq14lRym12wuOIYGCIiIiIi/DeGxNjYWL0osCRJUCgUAABDw/x9968aA2NkZIRPPvkE8+bNg6mpKYQQmDBhAubMmYPy5cvj6tWrGsshHDp0CFlZWWjZsqVG+alTp9CrVy+cPXsW0dHR8PLy0hn/+/7xnl3IiKjISU5O1rr9bWVlhbp16yI0NLTQ1jR5Ey/frgdy3qjexSDNwvbkyRPMmTMHdevWhZWVFUqVKoXKlSvjo48+QkxMTIHaHDhwoHr9FRVJkjB8+PBCiFj/dJ2fLllZWfjpp5/QqFEj2NrawtzcHHK5HF27dsWWLVvU9VTP+bCwsHzHEh0dDUmSsGnTpnzvS0S6ffLJJxg6dKj677yhoWG+k5cX1axZE4sWLVLfCZEkCdOmTYODgwNu3ryptU5VixYt0KpVK43kBQDq1KmDxYsXAwDWrFlT4HiKO3YhI6Ii63//+x/69OkDAHjw4AG2bduGUaNG4dq1axrrfBQVP/74o75DyDelUon27dvj9OnTGDduHBo3bgwAuHjxIrZv347Y2Fitb/jyYvLkyfjyyy8LO9xip1+/foiIiMDIkSMREhICExMTXL58Gbt378aePXvQrVs3fYdIRDr079+/UNsbNGgQDAw07xsYGRmhbt26uH37Ni5fvoz69etrbH/8+DHWrVuHQ4cO4datW3j27BmEEHj+/DkA4OTJk4UaY3HCBIaIiqyKFSuiSZMm6scdO3bEmTNnEB4eXiQTmJo1a+o7hHxT9aVesWIFAgMD1eUdOnTA8OHDkZ2dXaB2K1euXFghFltXrlzB+vXrMWXKFISEhKjL27Rpg6FDhxb42hLR21ejRo1CbS+3v4n29vYAgH///VejPDExEZ07d8bNmzdzbfPFRWFLGnYhI6JipXTp0jAyMtIoW79+Pdq3bw9HR0eYmZmhRo0aGD9+PJ48eaJR7/Lly+jVqxfKly8PExMTlCtXDm3atMGJEye02mvatCksLCxgaWmJDh06IDEx8bWxvdyFTNUtaP78+Vi4cCFcXV1haWmJpk2b4ujRo1r7//nnn+jSpQtsbW1hamqK+vXr5zpDjUpWVhbs7e11rnT/4MEDmJmZYfTo0bnuf+/ePQCAo6Ojzu0vfmMYFhYGSZKwb98+BAYGwtbWFhYWFvD19cXly5c19stLFyshBL755hsYGRnh559/VpcX9PqnpaXh888/R82aNWFpaQl7e3u0bt0asbGxGvXy+3sJCwtDtWrVYGJigho1amDVqlWvjQXI37XV5dKlSwgMDISbmxvMzc3h5OQEX19fnD59Wmf9jIwMjB49Gg4ODjAzM4OXl1eerhsRabOwsHgn7an+Drw4ZkWpVOKjjz7CzZs34ePjg5iYGNy9excKhQJCCFy8eBFAzt//kooJDBEVWdnZ2VAoFFAoFLh37x5WrFiB3bt3a31Yv3jxInx8fLB8+XLs3r0bI0eOxIYNG+Dr66tRz8fHB3/99Rfmzp2Lffv2YcmSJahfvz4ePHigrjNz5kz07t0bNWvWxIYNG/Dbb7/h8ePH8PT0xD///FOg8/jhhx+wb98+hIaGYs2aNXjy5Al8fHzw8OFDdZ2oqCg0b94cDx48wNKlS7F161bUq1cPPXv2fOW4CCMjI/Tt2xebN2/Go0ePNLaFh4cjIyND487Kyxo2bAgjIyN8+eWXWLNmDW7duvXa8xk8eDAMDAywdu1ahIaG4tixY/D29ta4jq/z/Plz9OnTB99//z22b9+OoUOHAniz66/6NjIoKAg7d+7EypUrUalSJXh7eyM6Olqrfl5+L2FhYQgMDESNGjWwefNmTJo0CdOmTcOBAwdee441atSAtbU1QkJCsGzZsnzPYnTz5k3Y2dlh9uzZ2L17N3744QcYGhrCw8MD58+f16r/zTff4PLly/jll1/wyy+/4ObNm/D29tZKLomoaDt27BguXboEuVyOiIgItGzZEnZ2durxMNeuXdNzhEWAICIqYq5cuSIA6PwZOHCgUCgUue6bnZ0tsrKyRExMjAAgTp48KYQQ4u7duwKACA0NzXXfq1evCkNDQ/G///1Po/zx48fCwcFBfPTRR+qyoKAg8fKfUC8vL+Hl5aV1Hu7u7hoxHzt2TAAQ4eHh6rLq1auL+vXri6ysLI02O3fuLBwdHYVSqcw17lOnTgkAYtmyZRrljRs3Fg0aNMh1P5Xly5cLS0tL9TV2dHQU/fv3FwcPHtSot3LlSgFAdOvWTaP88OHDAoCYPn26umzAgAFCLpdr1AMgvvjiC3Hv3j3RokUL4eTkJE6cOKHenp/rnxcKhUJkZWWJNm3aaMSc19+LUqkU5cuXFx988IHIzs5W10tOThZGRkZa56fLzp07RZkyZdTX1s7OTvTo0UNs27ZNo54qppUrV77yfDIzM4Wbm5sYNWqUujwqKkoAyDXOIUOGvDZOIsqheq0WFi8vLwFAREVF6dw+YMAArdf+2rVrBQDh7++vc59vv/1WAND5N6iw4y+qeAeGiIqsL7/8EgkJCUhISEBUVBRmzpyJDRs2oHfv3hr1Ll++jD59+sDBwQEymQxGRkbqgednz54FANja2qJy5cqYN28eFi5ciMTERK0xCHv27IFCoUD//v3Vd34UCgVMTU3h5eWl81v8vOjUqZPGTDJ16tQBAKSkpADI6Sp07tw5fPzxxwCgcWwfHx/cunVL5zfuKu7u7mjQoAFWrlypLjt79iyOHTuGQYMGvTa+QYMG4fr161i7di1GjBiBChUqYPXq1fDy8sK8efO06qviVGnWrBnkcjmioqJee6wrV66gadOmePToEY4ePYq6deuqtxXG9V+6dCk++OADmJqawtDQEEZGRti/f7/6efCi1/1ezp8/j5s3b6JPnz4aM87J5XI0a9bstbEAOXf9rl69ii1btmDs2LGoVasWIiMj0aVLl9fOyKZQKDBz5kzUrFkTxsbGMDQ0hLGxMS5evKjzfHKLMy+/FyIqOszMzAAAd+7c0dqWlZWF0NDQ1+777NmztxJbUcEEhoiKLGdnZzRs2BANGzaEt7c3JkyYgMmTJ2Pjxo3Ys2cPgJyBj56enoiPj8f06dMRHR2NhIQEREREAPjvj7gkSdi/fz86dOiAuXPn4oMPPkDZsmUxYsQIPH78GMB/bxaNGjWCkZGRxs/69etx9+7dAp2HnZ2dxmMTExON2FTHHTt2rNZxP//8cwB47bEHDRqEuLg4nDt3DgCwcuVKmJiYaCV7uSldujR69+6NRYsWIT4+HqdOnUK5cuUwceJEra5hDg4OWvs7ODiox3y8yrFjx3DhwgX07NkTzs7OGtve9PovXLgQn332GTw8PLB582YcPXoUCQkJ6Nixo84389f9XlTnk9v55pWZmRn8/Pwwb948xMTE4NKlS6hZsyZ++OEH/P3337nuN3r0aEyePBl+fn7Yvn074uPjkZCQgLp16+o8nzf5vRBR0dGkSRMYGhri8OHDGmPuHj58iI8//lhnYqNSqVIlACjwFPjFBWchI6JiRfUt+cmTJ9GhQwccOHAAN2/e1FrQS9d4DLlcjuXLlwMALly4gA0bNiA4OBiZmZlYunQpypQpAwDYtGkT5HL52z+Z/6c67oQJE+Dv76+zTrVq1V7ZRu/evTF69GiEhYVhxowZ+O233+Dn5wcbG5sCxVSrVi306tULoaGhuHDhgnp6ZQC4ffu2Vv3bt2+jSpUqr223Z8+ecHBwwMSJE5GdnY1Jkyapt73p9V+9ejW8vb01VqcGoE5Q80uV4OR2vgVVsWJFDBs2DCNHjsTff/+NWrVq6ay3evVq9O/fHzNnztQov3v3LqytrfMU0+3bt7USNSIq2hwcHDBy5EjMnz8fAwYMwOTJk1G2bFn8888/UCgU+O677/DZZ5/p3Ldnz56YMmUKOnfujDp16sDKygoAsG7dunx98VLUMYEhomJFNWOYaupJVZcZ1bfnKj/99NMr26latSomTZqEzZs34/jx4wBypg42NDREUlISunfvXsiR565atWpwc3PDyZMntT6s5pWNjQ38/PywatUqNG3aFLdv385T97F79+6hVKlSMDY21tqmuptTvnx5jfI1a9ZoXJ8jR44gJSUFQ4YMyVOskyZNQqlSpTBq1Cg8efIEs2bNAvDm11+SJK3nwalTpxAXF4cKFSrku71q1arB0dER4eHhGD16tPq5lpKSgiNHjmhdl5c9fvwYkiTB0tJSa5uqC9ir2tB1Pjt37sSNGzd0Jou5xVnY61kQ0ds3d+5cODs7Y+nSpbh8+TKePn2Ktm3bYuLEiShXrlyu+40fPx5KpRLr1q3DP//8o14zJiMj412F/k4wgSGiIuvq1avqaW2fPHmCuLg4zJo1C3K5XH2nolmzZrCxscGnn36KoKAgGBkZYc2aNVoLfJ06dQrDhw9Hjx494ObmBmNjYxw4cACnTp3C+PHjAQAuLi6YOnUqJk6ciMuXL6Njx46wsbHBnTt3cOzYMVhYWGis51GYfvrpJ3z44Yfo0KEDBg4cCCcnJ6Snp+Ps2bM4fvw4Nm7c+No2Bg0ahPXr12P48OFwdnZG27ZtX7tPVFQUvvzyS3z88cdo1qwZ7OzskJqaivDwcOzevRv9+/fX6ur1559/YsiQIejRoweuXbuGiRMnwsnJSd3dLS++/PJLWFpaYtiwYfj333/x3XffvfH179y5M6ZNm4agoCB4eXnh/PnzmDp1KlxdXaFQKPIcm4qBgQGmTZuGIUOGoFu3bhg6dCgePHiA4ODgPH2Tef78eXTo0AG9evWCl5cXHB0dcf/+fezcuRPLli2Dt7f3K8fSdO7cGWFhYahevTrq1KmDv/76C/PmzdP6faikpqaq43z48CGCgoJgamqKCRMm5PvciUoq8cJ0xoXhdWP3wsLCdM40KUkSvvzyy1wXBM4tTiMjIwQHByM4ODifkRYz+p5FgIjoZbpmITM1NRVVq1YVI0eOFLdu3dKof+TIEdG0aVNhbm4uypYtK4YMGSKOHz+uMbPLnTt3xMCBA0X16tWFhYWFsLS0FHXq1BHffvut1qxmkZGRolWrVsLKykqYmJgIuVwuAgICxB9//KGuk59ZyObNm6d1jgBEUFCQRtnJkyfFRx99JOzt7YWRkZFwcHAQrVu3FkuXLs3TdVMqlaJChQoCgJg4cWKe9rl27ZqYNGmSaN68uXBwcBCGhoaiVKlSwsPDQyxevFjj2qhmIdu7d6/o16+fsLa2FmZmZsLHx0dcvHhRo91XzUL2ovDwcGFoaCgCAwPVM63l5frr8vz5czF27Fjh5OQkTE1NxQcffCAiIyO1Ysnv7+WXX34Rbm5uwtjYWFStWlWsWLFC5/m97P79+2L69OmidevWwsnJSRgbGwsLCwtRr149MX36dPH06VOtmF6ciej+/fti8ODBwt7eXpibm4sWLVqI2NhYreeZahay3377TYwYMUKULVtWmJiYCE9PT/Hnn3++MkYiouJIEqKQU00iInovqdZESUhIQMOGDfUdDhERlVDsQkZERERE9BotWrTIc91BgwblaRwiFQwTGCIiIiKi1zh8+HCe6+ZlDCIVHLuQERERERFRscGFLImIiIiIqNhgFzIqEYQQBV7MjoiI6G0pVaqUeu2e9w3fe6mgXve6YAJDJcLjx49RunRpfYdBRESk4eHDh+rV0t83fO+lgnrd64JjYKhE4LdARERUFPEODJG2170umMAQEREREVGxwUH8RERERERUbDCBISIiIiKiYoMJDBERERERFRuchYyIiAiAUqlEVlaWvsOg94iRkRFkMpm+wyB67zCBISKiEk0Igdu3b+PBgwf6DoXeQ9bW1nBwcHhvZxoj0gcmMEREVKKpkhd7e3uYm5vzgyYVCiEEnj59itTUVACAo6OjniMien8wgSEiohJLqVSqkxc7Ozt9h0PvGTMzMwBAamoq7O3t2Z2MqJBwED8REZVYqjEv5ubmeo6E3leq5xbHVxEVHiYwRERU4rHbGL0tfG4RFT4mMEREREREVGxwDAyVGEqlEtnZ2foOg4iKkKysLAghkJ2dzb8P70B0dDTatGmDe/fuwdraWt/hvBPZ2dkQQiArK0trDIyRkZGeonp3+N5L+ZWX1wUTGCoxrl27hszMTH2HQURFiFKphEKhQFZWFgwMilenhKFDh2L16tWYOnUqxo0bpy7ftm0bevbsiWfPnukxOt0UCgUAIDMzs8T8Pc7KyoJCocD169e1EpiqVavqKap3h++9lF95eV0wgaESIzMzEzKZDIaGfNoTUQ6FQgGFQgFJkorlWAVTU1MsXLgQQ4cOhY2NDYD/xlwU9HwyMzNhbGxcaDHqUlyvd0GoztXY2Fjj/UeVzL3v+N5L+ZHX1wWfTVSiGBoalohb9kSUNy9+kC5uH6glSULr1q2RlJSEefPmYdasWVrbAWDLli0ICQlBUlISHB0d8dlnn2HUqFHqelWrVkVgYCCSkpKwdetWdOnSBV5eXhg7dixWrlyJr7/+GtevX0fHjh2xfPlyREREYNq0aXj48CF69+6NBQsWqO8srF27FosXL8aFCxdgYWEBb29vzJ8/H/b29hoxlaQEBsg5XyMjoxL7IZ7vvVTYSuYriYiISBchgKyn+jm2kTmQzw/1MpkM06ZNQ//+/fHFF1/A2dlZY/vx48fRp08fTJ48GQEBATh69ChGjBgBOzs79O/fX11v4cKFmDBhAsaPHw8AOHLkCJ4+fYoffvgBq1evxuPHj9GzZ0989NFHsLa2xtatW3H58mX06tULzZs3R48ePQDkfNseFBSEqlWrIi0tDePGjcOQIUOwbdu2N7w4RET/YQJDRESkkvUUxvNd9HLozLHJgLFFvvfr2rUr6tati2nTpuGnn37S2LZo0SK0atUK33zzDYCcuy1nz57FwoULNRIYb29vjB49Wv34yJEjyMrKwuLFi1G5cmUAQLdu3bB27Vpcu3YNlpaWqFGjBry8vBAdHa1OYAYOHKhuo1KlSli4cCGaN2+Of//9F5aWlvk+NyIiXYrXiEUiIiLSMmPGDPz22284e/asRvm5c+fQrFkzjbKmTZvi0qVLUCqV6rIGDRpotWlubq5OXgCgXLlykMvlGolIuXLlkJaWpn584sQJdO/eHW5ubrCzs0O7du0A5AzkJiIqLLwDQ0REpGJknnMnRE/HLihPT0+0a9cOkydPRr9+/dTlQgitsSZCCK39VavFa4Tz0pgF1TiOl8tUU+Q+efIEnTp1Qtu2bbFy5UqUKVMG165dQ+fOnTkLFREVKiYwREREKpJUoG5cRcGMGTPQqFEjuLm5qctq1KiBw4cPa9Q7evQo3NzctKb0fVPnz5/H3bt3MX36dFSoUAFAzhgcIqLCxi5kRERE74HatWujd+/e+PHHH9VlI0eORFRUFGbOnIkLFy7gt99+w5IlSzRmISssFSpUgLGxMX788UdcvnwZ27dvx8yZMwv9OERETGCIiIjeE0FBQRpdxOrXr4+1a9diw4YN+OCDDzB16lRMmTJFYwB/YSlbtix++eUXbN68GfXq1cP8+fMxe/bsQj8OEZEkdHWGJXoPXbhwASYmJpyLnojUFAoFHj16hIoVK8LU1FTf4dB7KCMjA1evXoWVlZXGOjBZWVmQy+V6jOzdyOt7r1KpRHx8PFJTU2Fvbw8PD49C7+ZIRV9eXxccA0P0Hrpy7xmuP8yEc2ljuNqZ6TscIiKiXO3atQtBwSG4eeO6uqy8kzNCgoPg4+Ojx8ioqGICQ/QeefBMgaDdyUi49lhd1qhCKYR0dIG1GV/uRERUtOzatQvDhg2DWeVGcOg7EkZl5chKS8GDoxswbNgwLFu2jEkMaeEYGKL3SNDuZCSlZ+CHPh/g2MQ2+KHPB0hKz0DwnmR9h0ZERKRBqVQiKDgEZpUboYz/JJg4VYeBsRlMnKqjjP8kmFVuhKCQqRprFhEBBUhgoqOjIUkSgoOD30I4RVtYWBgkSVL/9OrVS98hlSh9+/bVuP5hYWH6DqlIuXLvGRKuPca0ru7oVMcR9qVM0amOI6Z2rY1jVx/jyr1n+g6RiIhILT4+HjdvXIdVk48gSZofSSXJAFZNeuDm9WuIj4/XU4RUVBW5OzAuLi5wcXHRdxiv1LVrVwQFBSEgIECjfODAgZAkCUePHn2j9ovDNXgbVAlibomJv78/goKC0LVr13cbWDFx/WHOQnGNXG00yhu72mpsJyIiKgpSU1MBAEZldQ/aNioj16hHpFLkEpjiwM/PD8HBwVoJDL1d/v7+CA4Ohp+fn75DKZKcSxsDABKu3NcoP3YlXWM7ERFRUWBvbw8AyEpL0bk9626KRj0iFSYwRO8JVzszNKpQCpO3nsaOUzeR+jgDO07dxJStZ9C4YinORkZEREWKh4cHyjs549HRDRAiW2ObENl4dHQjyjtXgIeHh54ipKLqjRKYgwcPwsvLC5aWlrC1tUWfPn1w/fp1rXqpqakYNWoUqlSpAhMTE5QpUwbdu3fHmTNn1HWSk5MhSRJSUlKQkpKiMdZBNd4mMzMTixcvRocOHVChQgWYmJjA3t4e/v7+SExMLNA5qI77qp/k5OQCtf1i+wMHDsTly5cREBAAGxsbWFhYoG3btjh58mS+roHKwYMH4evrizJlysDExARubm6YNGkSnj59qlHvxTFLcXFx6NChA6ytrSFJkrqOEAK//vorWrZsCWtra5ibm8PNzQ2ffvoprl69qtHe48ePERQUhFq1asHMzAzW1tbo2LEjDh06pHXu3t7ekCQJGRkZ+Oqrr1ChQgWYmprC3d0dK1as0Kg7cOBABAYGAgACAwM1zp3yLqSjC6rYmWL42kQ0nrEfw9cmooqdKYI7uOg7NCIiIg0ymQwhwUF4lpSAuxHT8fzGWWQ/f4rnN87ibsR0PEtKQEjQFK4HQ1oKPK/q0aNHMWvWLHTq1AkjRozA8ePHER4ejkOHDiEhIQHlypUDACQlJcHb2xs3btxA+/bt4efnh9TUVGzevBl79uzB/v374eHhAWtrawQFBSE0NBQAMHLkSPWxvL29AQDp6ekYOXIkPD094ePjAxsbG1y+fBnbtm3D77//joMHD6JRo0b5Og/VcV/27NkzLFy4ENnZ2YWyuFlycjI8PDxQs2ZNDBo0CElJSdi6dStatWqFs2fPoly5cnm6BgCwdOlSfP7557CxsYGvry/Kli2LhIQEzJgxA1FRUYiKioKxsWZ3oSNHjmDmzJlo1aoVhg0bpk5MhBDo3bs31q9fDycnJ/Tu3RtWVlZITk7G+vXr0bFjR1SsWBFAzvVv2bIl/v77b3h6eqJDhw54+PCh+jw2btyos3tXjx49cOrUKfTo0QNZWVnYsGEDBg8ejDt37mDChAkAcrrlPXjwAFu3bkXXrl1Rr169N77mJZG1mSFC/apwHRgiIioWfHx8sGzZspx1YFaPU5eXd66ARZxCmXJR4ARmz549+OWXXzB48GB12dSpUxEUFIRvvvkGy5cvBwD0798ft2/fxp49e9CuXTt13UmTJqFhw4YYOnQoTp06BWtrawQHB6sHcOua5czGxgZXr16Fk5OTRvnff/+NJk2a4JtvvsG+ffvydR6q475ICIFevXpBoVBg3rx5cHBwyFebusTExGD27Nn4+uuv1WWTJ0/G9OnTsXLlSowfPz5P1+Cff/7B//73P9SrVw9//PEHbG1t1dtmz56NCRMmYPHixRgzZozGfvv27cPy5csxaNAgjfIlS5Zg/fr1aNOmDbZv3w4zs/8+7D579gzPnv03c9X//vc//P3331ixYoX6bgkAzJw5E40aNcKwYcPQsWNHrYTv8uXLOHPmDEqVKgUAmDhxIj744ANMmTIFPXv2RKVKlTQSGD8/PwwcODBvF5Z0crUzY+JCRK+UnJyMatWq4dixY6hbty5iYmLQvn173LlzB9bW1voO75VWrVqFsWPHvtHg7oK0UbVqVQwfPhwjRowo8HFJm4+PDzp06ID4+HikpqbC3t4eHh4evPNCuSpwF7Jq1appfRgeN24cypYti/DwcGRmZiIxMRFHjhzBgAEDNJIXIOePwNChQ3H69GmNrmSvYmJiopW8AECtWrXQqlUrHDx4EFlZWQU9JbWgoCBs2LABgYGBGDt27Bu3BwCurq4YN26cRpkq+UtISMhzOz/99BMUCgW+++47jeQFAL766iv19X9Z/fr1tX5fAPDDDz9AJpNhyZIlGskLAJiZmamPcffuXXWi82LyAgDlypXDuHHjkJaWhj/++EPrGBMnTlQnLwDg4OCA0aNHQ6FQYO3atXk+dyIiypGamorPP/8cVapUQalSpVCxYkV06tQpX7NgVqhQASkpKahVq9ZbjFR/oqOj0b59ezg4OMDa2ho1a9bE4MGDoVAo9B0a6SCTydCsWTP4+fmhWbNmTF7olQp8B6Z58+Za4xPMzMzQoEED7N69GxcuXFD/Ib19+7bOuwnnzp1T/1u7du08HffEiROYO3cuDh06hNu3b2slLHfv3oWjo2MBzihHeHg4pk2bBk9PTyxdurTA7bysbt26MDDQzBednZ0BAA8ePMhzO6prunv3bp3JgpGRkfq6vqhx48ZaZU+ePME///yDKlWqwM3N7ZXHTUhIgFKpREZGhs7f5cWLFwHk/C47d+6ssc3T01OrvqrsxIkTrzwuERFp69WrF7KysvDLL7/A1dUVqampiIqKQnp6ep7bkMlkhdLDoCj6559/0KVLF3zxxRf49ttvYWpqikuXLmHLli3Izs5+fQP0zimVSt6BoTwrcAKT25R2qrEvDx8+VP8h3blzJ3bu3JlrW0+ePMnTMY8cOYLWrVsDANq3bw83NzdYWlpCkiRERkbi5MmTeP78eX5OQ8PRo0cxaNAgVKpUCREREVrjSN5E6dKltcoMDXMuf35WmFVd0xkzZuTr+Krfy4tUiZOuu1q5Hffw4cM4fPhwrvV0/S51PVdefJ5Q4TC8fwmyh1ehLF0RCpsq+g6HqFgSQuBZln4+4JoZGeRp4pIHDx7g8OHD2LdvH1q2bAkAkMvlWmNATUxM8N1332HHjh04ePAgypUrh1mzZqF79+4AtLuQvezZs2fo1asX0tPTsXXrVtja2uLXX3/FggULkJycDLlcji+++AKffvpprrHu2bMHs2fPxt9//w2ZTAYPDw8sWLAAlStX1ohh/fr1+PHHH3Hs2DFUqVIF33//PZo0aaJuZ9WqVZg6dSru3r2Ldu3aoVmzZq+8Rn/88QccHBwwa9YsdVnlypXRoUOHXPdJSkrCV199hWPHjuHJkyeoXr06pk2bhjZt2mjU+/fff9G/f3/s2LEDVlZWGDduHL744otXxkOvtmvXLkwNnoJrN26pyyo4OWJK8FSOgSGdCpzA5NZn9M6dOwByPrBbWVkBABYvXozhw4cX9FBqM2bMwPPnz3Ho0CE0b95cY9vRo0c1ZvTKr6tXr8LPzw/GxsbYvn07ypQp86bhvhWqa/ro0SONblmvo+tNUZVU3bhxI8/HHTNmDObPn5/n4wI5z5UKFSpolL34PKE3Y5BxHzb7voTJrf+6Ij53bIT77RYh29TmFXsS0cueZWWj3vQDejn2iUmtYW78+m+cLS0tYWlpiW3btsHDwwMmJia51g0JCcH06dOxYMECrF27Fv369UPNmjVRo0aNVx7j4cOH6NatG0xMTLB7925YWFhg+fLlmDZtGkJDQ1G3bl2cPHkSn332GSwsLNCvXz+d7Tx9+hRffvklatWqhadPnyIkJAQfffQREhISNHolTJkyBbNnz0aVKlUQFBSE/v37459//oGhoSGOHTuGYcOGYdq0aejatSv27t2LadOmvTJ+BwcH3L59G7GxsTp7Aejy5MkTdOzYESEhITAxMcHq1avh7++P06dPqyezAYCFCxfi66+/xqRJk7Bv3z6MGzcO1apVQ9u2bfN0HNK0a9cuDBs2DJ3dDLFhsDlq28twJlWJmbF3MWzYMCzjQH7SocBjYA4fPgwhhEbZs2fP8Ndff8HMzAxVq1ZVz9sdFxeX53ZlMlmudySSkpJga2urlbw8ffoUx48fz+cZ/Offf/+Fr6+vepxHzZo1C9xWYXjVNVBd0/z0c86NpaUlatasiStXrqi7gOWmUaNGkCQpX79LldjY2FzLXpxtTHWrOD93pEoiKeupxo/NH6Ngcv8i0CMMGHMB6BEGk/sXYfPHaK26UtbT17ZPREWboaEhfvnlF6xevRr29vbw9vbG5MmTcfr0aa26/v7+GDRoEKpWrYrg4GA0aNAAP/744yvbv3PnDtq2bYuyZcti69atsLCwAADMmjULc+bMgZ+fH1xdXeHn54cRI0bgl19+ybWtbt26wc/PD25ubqhbty5++uknnDlzBmfPntWoN2rUKPj4+KBq1aqYMmUKUlJScOnSJQDA999/j3bt2mHcuHHqQfQvj6t9Wffu3dGzZ0+0bdsWcrkcPXr0wI8//ohHjx7luk+dOnUwdOhQ1K5dG25ubggJCYGrqyt27NihUa9p06bqWL744gv4+/vju+++e2U8pJtSqcTU4Cno7GaIyF6maOJsCEtjCU2ccx53djPEtJAgfi4gLQW+A3P+/HmsWLFCYxayefPmIS0tDYMGDYKxsTEaN24MDw8PhIeHo0uXLujZs6dGG9nZ2YiNjYWXl5e6zNbWFmfOnEFGRobWbFZyuRwXLlzA33//rR50qFQqMXbsWKSlpRXoPLKzs9GnTx+cOnUKixYtQseOHQvUTmF61TX4/PPP8fPPP+N///sf9u3bp3Vn48GDB7hy5Qrq16+fp2N98cUX+OKLL/D5559j27ZtGgP5MzIy8PTpU9ja2sLBwQEfffQR1q9fj3nz5mHs2LFad3Xi4+Ph7u4Oc3NzjfIZM2bA19dXfcfozp07WLhwIQwNDdGnTx+N8wagcy0h+o/jygbahT3CgFrdcv5fqxsgBEw2Beqse3PYWa0yIsphZmSAE5Na6+3YedWtWzd8+OGHOHToEOLj47F3714sWLAAS5cuRf/+/dX1XuyGBeR8CXbq1KlXtu3j44MGDRpg7dq16i+W0tLScO3aNXzyySf47LPP1HUVCsUr76QnJSUhJCQE8fHxuHfvnnr8ydWrVzUmD3B3d1f/XzUuJy0tDdWrV8e5c+fQtWtXrfPYu3dvrseVyWT4+eefERwcjOjoaMTHx2POnDlYsGABDh06pHOs7JMnTzB9+nTs2rULt27dgkKhwLNnz3Dt2jWNerqu6eLFi3ONhXIXHx+PazduYcNgcxi89JnCQJIwoYURmq24ifj4+Nd2G6SSpcAJTPv27fH5559j586dqF69Oo4fP449e/agQoUKmDlzprpeeHg4WrVqhV69eiE0NBQNGjSAqakprl69iri4OKSlpSEjI0Ndv3Xr1vjzzz/h6+sLT09PGBsbo0WLFmjRogX+97//Ye/evWjRogU++ugjmJqaIjo6Gjdu3IC3tzeio6PzfR6bNm3C9u3b4ejoiPT0dJ0D1EeOHPlOp5R81TWoXbs2fvzxR3z22WeoVq0afHx8ULlyZTx69AiXL19GTEwMBg4cmOcJCD777DPExMRgw4YNcHNzQ5cuXWBlZYWrV69iz549WL58uXptlx9//BHnz5/HV199hd9++w1NmzZF6dKlce3aNfz111+4ePEibt26pZXAVKpUCbVr10b37t3V68CkpqZixowZqFSpkrpe06ZNYWZmhtDQUDx69Ahly5YFAIwfP75wLuz7rOJLf9jlzXXXI6JXkiQpT924igJTU1O0bdsWbdu2xcSJE/Hpp59i2rRpGgmMLq8bZ9OxY0dERkbi7Nmz6gl2VInHkiVLtMbavGqgtb+/P5ydnbFkyRI4OjpCCIH69esjMzNTo56RkZFWfKpjvtzbIz+cnJzw8ccf4+OPP0ZISAhq166Nn3/+GVOmTNGqO378eOzbtw9z5sxB5cqVYWpqit69e2vFqgsXXS4Y1XCE2va6n0Oq8jeZLpveTwVOYJo2bYqJEydi0qRJWLRoEYyNjdGrVy/MnTtXY8C4q6srEhMTsXDhQkRGRmLFihWQyWRwdHREy5YtERAQoNHu5MmTcf/+fezYsQMHDhxAdnY2goKC0KJFC3Tu3BmbNm3CzJkzsXr1apibm6N169bYsmULpk6dWqDzUK1cf+vWLYSEhOisM3DgwHeawLzqGgDA0KFDUa9ePSxcuBAHDx7Etm3bULp0aVSsWBGjRo3CgAED8nwsSZKwbt06tG/fHr/88gtWrVoFIQScnJzw0UcfoUGD/77Bt7W1xZEjR/D9999j/fr1WLNmDbKzs+Hg4IC6deti8uTJOscObdiwAVOmTEF4eDjS0tLg5uaGmTNnaty9U7W/adMmBAcHY8mSJeo1aJjAaLoV+Jf6/4YPLqPslh7A1SP/3YEBgJSciRbSum2EwrrSy00Q0XuoevXq2LZtm0ZZfHw8+vbtq36c24D9F82YMQOWlpbo2LEj9u3bhxo1aqBcuXJwcnLClStX0Lt37zzFc+/ePZw7dw4//PCD+v3rVZPA5KZGjRqIj4/XKDt27Fi+27GxsYGDg0OuEwcdPnwY/fv3V9/t+ffff5GSkqJVT1cs1apVy3c89N8kP2dSlWjirP2R9EyqUqMekUq+Exhvb2+Nb0MOHjz42n1sbGwwbdq01w66A3LGZSxbtizX7d27d1fPoPKisLAw9QKQ+TFw4MBCWzRRVwwuLi6v/PZI17bXXQMgZ0yKrvVeXvby70sXSZIwePBgrYRCFzMzM4wbN05rTZvX7TNv3jzMmzfvtXV9fHw4WO81hNF/d7iyytbGc6dmMN45BpIQOXdeUg5D7BqLTOdmyCqbt+nJiaj4uHfvHvr06YMBAwbA3d0dlpaWOH78OBYuXAhfX1+NuhEREWjQoAGaNWuGdevWISEhAT/99NNrjzFnzhwolUp06NABe/fuRfXq1TFp0iSMHj0apUqVQocOHZCZmYm//voL9+/fx8iRI7XasLGxgZ2dHZYvXw4HBwdcu3YNkyZNyvf5fvHFF/Dy8sL8+fPRpUsX/PHHH6/sPgYAP//8M06ePImuXbuiUqVKeP78OVavXo1//vkH3377rc59KleujMjISHTq1AmSJCE4OFjnlMtxcXHqWPbv34/NmzcjMjIy3+dFOd3vKjg5YmbsXUT2kml0I8sWArMOZaGic3n1+F8ilQIP4i/JAgMDIUkSevXqpe9QSpS+fftCkiSthTRLuvtt5iPTthqwKRBYUBXYFIhM22q43zp/s8URUfFgaWmJRo0a4bvvvkObNm3wwQcfIDg4GIMGDUJoaKhG3cmTJ2PDhg1o2LAhVq9ejV9//fW1M5CpzJ8/H927d0fHjh1x4cIFDBo0CEuXLsVvv/2GBg0aoG3btvjtt9/g6uqqc38DAwP89ttvOH78OD744AOMGzdOY1rjvPLw8MDSpUuxZMkSNG7cGH/88cdr78w3atQIT548wfDhw1G/fn20bdsWx44dw8aNG9VTT79s3rx5sLGxgZeXF/z9/dGuXTud40lHjhyJxMREeHh4qCc2aN++fb7Pi3K6H04JnoodFxXwW5eBuGsKPH4uEHct5/GOiwpMDgrhejCkRRJv0rm0hDlx4oTGtyy1a9fW6gJH//H29kZMTMwb9V9+UUREhMbgUz8/P41ZzF7nwoULMDEx0ehr/T7hOjBE+adQKPDo0SNUrFhRa9KU4s7ExAQbNmzQGgBP71ZGRgauXr0KKysr9fpvAJCVlQW5XK7HyN6NvLz36loHpqJzeUwOCmGvjBImr6+LAo+BKcqSk5Pz1J3M2tpa523v3NSrVy9fH5ipcPn7+8Pf31/fYRRZCpsqTFyIiKjY8fHxQYcOHRAfH4/U1FTY29vDw8ODd14oV+9tApPbgPwXyeXyfCUwlD8FmRWOiIiISh6ZTMapkinP3ssEJi8D14mIiN5nz58/13cIRERvBQfxExERERFRscEEhoiISjTesae3jc8xosLFBIaIiEosA4Oct0HVwrlEhU313FI914jozb2XY2CIiIjywsDAAMbGxkhLSwOQs/AuUWF59uwZ0tLSYGxszASGqBAxgaESRaFQ6DsEIipiTExMkJ2djTt37kB6YSVwojclhICRkRFMTEyQlZWlsa0kvR+VpHOlN5PX5woTGCoxjI2NkZmZCaVSqe9QiKiIkclkMDAwgBCC4xWoUEiSpP7JzMzUdzh6w/deehskwb/UVEIolUpkZ2frOwwiIiIAeOXq9O8LvvdSfuXldcEEhoiIiIiIig2OKCMiIiIiomKDCQwRERERERUbTGCIiIiIiKjYYAJDRERERETFBhMYIiIiIiIqNrgODBERERHpnVKpRGxsLG7dugVHR0d4enpCJpPpOywqgpjAEBERFUEX7zxG8r2ncLEzh1u5UvoOh+itioiIwMhRo3Htaoq6rEJFOUK/XQh/f389RkZFEdeBISIiesfu/fs81233n2Zi4pYziL+Sri7zcLXFjG61YWNunOdj2FmavFGMRO9KREQEAgICYFa5EayafASjsnJkpaXg0dENeJaUgE2bNjGJIQ1MYIiIiPLpaabijfavOWVPrtsMJKCUqRFmdnNHI1cbJFy5j2+2nMbjjCxk5+Md+5+pHd4oxrfB3JgdP0iTUqmEa6XKuGdcDmX8J0GS/hueLUQ27kZMh11WKq4kXWJ3MlJjAlOEhIWFITAwUP24Z8+eWLdunR4jKjouXboENzc39WO5XI7k5GT9BUREJZrL+J1vtf0f+nyATnUc1Y93nLqJ4WsT3+ox34Xk2Z30HQIVMdHR0WjVqhUc+s6HiVN1re3Pb5zF7dXjEBUVBW9v73cfIBVJnIWsCOratSuCgoIQEBCA4OBgSJKU55/g4GB9h19gLi4ucHFx0bnN1tYWQUFBCAoKQunSpd9tYERE71gjVxuNx41dbfUUCdHbdevWLQCAUVm5zu1GZeQa9YgADuIvkvz8/DBw4EAAQJkyZbS2R0dHIyYmBl27dkW9evU0tr2v307Y2tqqk7OwsDC9xkJE9Kbds17VhQwAEq7c17gDc+yF8TB5VRS7kBG9zNEx53melZai8w5M1t0UjXpEABOYIs/b21srKQkODkZMTIxGokNERO/Om47l+GtS21y3fb7mOCZvPQMBgcautjh2JR1Ttv4ND1db/PjxB+8sRqJ3wdPTExUqynHv6AadY2AeHd2ICnIXeHp66jFKKmrYhYyQmpqKsWPHolq1ajA1NYWtrS2aNGmCBQsWaNXdsWMHWrVqhdKlS8PMzAz16tVDaGgolEqlRr3k5GRIkoSBAwfi8uXLCAgIgI2NDSwsLNC2bVucPHlSq25KSgpSUlLemy5xRES5sbM0yfVnSd8GqFXeCsPXJqLxjP0YvjYRtcpbYUnfBq/c7+UfouJAJpMh9NuFeJaUgLsR0/H8xllkP3+K5zfO4m7EdDxLSkDowgUcwE8a+PVMCXfx4kW0atUKN27cQIsWLeDn54cnT57gzJkzmDFjBsaMGaOuu2jRIowcORK2trbo06cPLCwssH37dowaNQqxsbHYtGkTJEnSaD85ORkeHh6oWbMmBg0ahKSkJGzduhWtWrXC2bNnUa5cOVhbWyMoKAihoaEAgJEjR6r3f1+7xBER5cbWwhi/DfbgOjBUYvj7+2PTpk0568CsHqcuryB3QSinUCYdmMCUcH379sWNGzewbNkyDB06VGPb9evX1f+/fPkyxo4dC3t7e/z555+oUKECAGDmzJlo3749IiIisGbNGvTt21ejjZiYGMyePRtff/21umzy5MmYPn06Vq5cifHjx8Pa2hrBwcHqsS2860JEBLiVK8XEhUoMf39/dO3aFbGxsbh16xYcHR3h6enJOy+kE7uQlWAJCQk4duwYWrZsqZW8AICzs7P6/2vWrIFCocCYMWPUyQsAGBsbY/bs2QB0D653dXXFuHHjNMoGDx6sPj4RERERkNOdzNvbG71794a3tzeTF8oV78CUYMeOHQMAtG/f/rV1ExNz1h/Q1aWrSZMmMDMzw4kTJ7S21a1bFwYGmnmyKjF68OBB/gImIiKi95JSqeTdF8oz3oEpwVQJhJOT02vrPnr0CABQrlw5ndvt7e3x8OFDrXJda7YYGubkzS8P/CciomIq9RxwblfOv0T5FBERgSqVXNCqVSv06dMHrVq1QpVKLoiIiNB3aFRE8Q5MCWZtbQ0AuHHjxmvrWllZAQDu3LkDuVx7sanU1FR1HSIiKgae3H3zNp6mAztGAimH/yuTNwc6hwLmb7D4poX2Gmj0foqIiEBAQAA6uxkifLA5atvLcCZViZmH7iAgIACbOIifdGACU4I1btwYALB3715MnDjxlXXr16+PLVu2IDo6Wr2fyrFjx/Ds2TM0bdr0jeKRyWTIzMx8ozaIiIqczCf6jkC3eZXfvA3JADCxAnqEARWbAVePANtHAj96ACK74O1+c/PNY3tbjC30HcF7Q6lUYsyoL9HZzRCRvUxh8P8zmTZxNkRkTxn81mdg7OiR6Nq1K7uTkQYmMCVYo0aN0LhxYxw8eBA///yz1kD+GzduqLuX9enTB1OnTsXChQvRt29flC9fHgCQlZWF8ePHA8AbL6ppa2uLM2fOICMjA6ampm/UFhFRkTGzvL4jeHtENuAbCtTqlvO4VjdACGBT4Ju1W5SvWbB2d2kqmNjYWCRfvY7wwebq5EXFQJIwobkRmq24htjYWC6rQBqYwJRwq1evhre3N4YNG4bffvsNTZs2RUZGBv7++28kJibi3r17AIDKlStjzpw5GDNmDOrUqYOPPvoIFhYW2LFjB86dO4euXbtqTaGcX61bt8aff/4JX19feHp6wtjYGC1atECLFi0K41SJiOhtqNhM87G8uX7ioGLn1q1bAIDa9rrvrqjKVfWIVJjAlHBubm44fvw4Zs2ahe3btyM0NBSWlpZwc3PDpEmTNOqOHj0aVapUwcKFC7F69WpkZmaiatWqWLBgAUaMGKG1iGV+TZ48Gffv38eOHTtw4MABZGdnIygoiAkMERVvRbU7VGHd5bh65L87MIDmeJiCKqrXjAqVo6MjAOBMqhJNnLU/kp5JVWrUI1KRhBBC30FQjrCwMAQGBmLlypVv3B3rfebi4gIASE5O1mscRETFWmEM4t/QH0g7D/jMy7nzknIY2DUOKFsd+OjXgrfLQfwlglKpRJVKLnA3u4PInqYa3ciyhYDf+gycyXDAxaQrHANDGpjAFCGqBEalZ8+eWLdunR4jKjouXboENzc39WO5XM4EhohI357cAzYPBi5H/VdWqRXQfTlgYae/uKjYUM9CVtUQE5obqWchm3U4CzsuKDgLGenEBKYIOXHiBCIjI9WPa9eujYCAAP0FVISkp6fju+++Uz+2trbGyJEj9RcQERH9J/UckH4ZsK0E2FfXdzRUzERERGDMqC+RfPW6usxVXgHzF4YyeSGdmMC8ZyIjI3HixInX1vP29uaMHkRERFQkKJVKxMbG4tatW3B0dISnpye7jVGuOIj/PRMZGYlff81bv2MmMERERFQUyGQyfi6hPOMdGCIiIiIiKjYM9B0AERERERFRXjGBISIiIiKiYoMJDBERERERFRtMYIiIiIiIqNjgLGRUYiiVSmRnZ+s7DCIiIgCAkZGRvkN46/jeS/mVl9cFExgqMa5du4bMzEx9h0FERAQAqFq1qr5DeOv43kv5lZfXBRMYKjEyMzMhk8lgaMinPRER6ZdCodB3CO8E33spP/L6uuCziUoUQ0PDEnHLnoiIqKjgey8VNg7iJyIiIiKiYoMJDBERERERFRtMYIiIiIiIqNhgAkNERERERMUGExgiIiIiIio2mMAQEREREVGxwWmUiYiIiEjvlEol4uPjkZqaCnt7e3h4eEAmk+k7LCqCmMAQ0Vt35d4zXH+YCefSxnC1M9N3OEREVMTs2rULQcEhuHnjurqsvJMzQoKD4OPjo8fIqChiAkNEBXb/adYrtz/MUGBe1HUk3vhXXVbfyRLjWjmjtKnmnx8bcy5yRkRUEu3atQvDhg2DWeVGcOg7EkZl5chKS8GDoxswbNgwLFu2jEkMaZCEEELfQRRVYWFhCAwMVD/u2bMn1q1bp34cHx+PCRMm4OTJk0hPT4eXlxeio6P1EOn7T6FQaK3im9+n7oULF2BiYlJiVgN+lqV868dos+TUK7cbSEApUyPM7OaORq42SLhyH99sOY3HGVnIfunXt/+zOvk6tpkRuxUQUfGVlZUFuVyu7zDeute99yqVSjRp2gwPzMqjjP8kSNJ/w7OFyMbdiOmwzriFo0cOsztZCZDX1wXvwORB165dUa9ePdSuXVtd9vDhQ/j6+iIzMxP9+vWDnZ0dXFxc3kk8kiS9N8nS2rVrERoair///hvGxsZo2rQppk6dioYNG2rUMzAwQFBQEICcxDIlJUUf4RYrr0su3oVsAczs5o5OdRwBAJ3qOEJAYPjaRK26+Y33yIj6hRIjERHpT3x8PG7euA6HviM1khcAkCQDWDXpgZurxyE+Ph7NmjXTU5RU1DCByQM/Pz8MHDhQoywhIQFpaWmYNWsWxo8fr5/AirmZM2di4sSJqFixIj799FP8+++/WLduHZo3b449e/bA29tbXdfAwADBwcEAgOjoaCYwxUgjVxuNx41dbfUUCRERFTWpqakAAKOyur91Nyoj16hHBDCBKbCbN28CABwcHPQcSfF08eJFBAUFoWrVqjh27BhKly4NABgxYgQaN26MIUOG4Ny5czA05FO0oPLbJasg8nLXJOHKffUdGAA4diVdZ713ES8RERUt9vb2AICstBSYOFXX2p51N0WjHhHAdWAKRJIkDBgwAAAQGBgISZIgSZJGl67U1FSMGjUKVapUgYmJCcqUKYPu3bvjzJkzWu1FRUVh0KBBqFatGiwtLWFpaYmGDRti2bJlGvWio6MhSRIAICYmRn1cSZIQFhYGAAgODtaKRSUsLEyjLgAkJydDkiQMHDgQ586dg7+/P8qUKQNJkpCcnKyut3XrVrRp0wY2NjYwNTVF7dq1MX/+fCiVBRtnsXLlSigUCkycOFGdvABArVq10L9/fyQlJeHAgQMFaptymBnJ3vrPziG1X/lT38kSk7eexo5TN5H6OAM7Tt3ElK1nUN/JUqtufo9NRETFn4eHB8o7OePR0Q0QIltjmxDZeHR0I8o7V4CHh4eeIqSiiF9vF0BQUBBOnDiBrVu3qsfHAFCPgUlKSoK3tzdu3LiB9u3bw8/PD6mpqdi8eTP27NmD/fv3a7wQ58yZg0uXLqFJkybo1q0bHjx4gN27d+OTTz7B+fPnsWDBAnX7QUFBCAkJgVwu1+jWpoqhoFTHr1WrFgYMGID09HQYGxsDAL755hvMmjULzs7O6N69O6ysrHDw4EGMG5fTJ3Xjxo35Pp4qwWrfvr3Wtg4dOmDp0qWIiYnRuZ2KjtfNHDbDxxXBe5I1xrw0rlgKwR1cYG3GPz9ERCWdTCZDSHAQhg0bhrsR02HVpAeMysiRdTcFj45uxLOkBCxatowD+EkDP0EUQHBwMMLCwrB161ad42P69++P27dvY8+ePWjXrp26fNKkSWjYsCGGDh2KU6f+63qzZMkSuLq6arShUCjg4+ODRYsW4csvv0TFihXh4uKC4OBghISEqP9fWA4fPozJkydj6tSpGuX79u3DrFmz8OGHH2LTpk0wNzcHkDMD2Oeff46lS5di8+bN6N69e76Od/HiRVhaWursgufm5qauQ8WbtZkhQv2qcB0YIiLKlY+PD5YtW5azDszqcery8s4VsIhTKJMO7EJWyBITE3HkyBEMGDBAI3kBgKpVq2Lo0KE4ffq0Rleyl5MXADA0NMSnn34KpVKJqKiotx63g4MDJk2apFX+/fffAwB++ukndfIC5HSjmz17NiRJQnh4eL6P9/DhQ42uYy+ysrJS16H3g6udGTwrlWbyQkREOvn4+OBo3BFs3LgRP/zwAzZu3IijRw4zeSGdeAemkB09ehQAcPv2bZ13SM6dO6f+VzUt8+PHjzF//nxERkYiKSkJT5480dhHNWHA21S3bl11l7EXHT16FBYWFli+fLnO/czMzNTnRERERFRQMpmMUyVTnjCBKWTp6TkzLO3cuRM7d+7MtZ4qScnMzIS3tzeOHz+O+vXrq9eUMTQ0RHJyMn799Vc8f/78rcddrlw5neXp6elQKBQICQnJdd+XE668KF26dK53WB49eqSuQ0RERO8/pVKJ+Ph4pKamwt7eHh4eHhz3QrliAlPIVN2fFi9ejOHDh7+2/tatW3H8+HEMGTIEP//8s8a2devW4ddff83X8Q0McnoFKhQKrW2v6pKlmt3sZVZWVpAkCXfv3s1XHK/j5uaGuLg43L59W2scjGrsi2osDBUOw/uXIHt4FcrSFaGwqaLvcIiIiAAAu3btwtTgKbh245a6rIKTI6YET2UXMtKJY2AKmWp2sbi4uDzVT0pKAgB06dJFa1tsbKzOfQwMDHKdvtjGJmfRwBs3bmhtS0zUXv38dTw8PHDv3r1CH1Dv5eUFANi7d6/Wtj179mjUIU0Gz9Lz9SO7fxl22/vDfqMv7PZ+kfPv9v6Q3b+c5zaIiIjehl27dmHYsGGoZ3EXcYPN8XhCKcQNNkc9i7sYNmwYdu3ape8QqQjiHZhC1rhxY3h4eCA8PBxdunRBz549NbZnZ2cjNjZW/eFcLs9ZYfbQoUPw9fVV14uJidG6I6Nia2uL69ev69zWsGFDAMCqVavQr18/9R2ZuLg4rFmzJt/nM2LECPz+++8YNGgQIiMjYWdnp7H99u3buH//PmrUqJGvdgMDAzF//nzMmDEDXbt2VXcX+/vvv7Fq1SpUrlwZrVu3zne874qU9VRvx3b4rXn+dpAMABMroEcYULEZcPUITLaPRLlNvsBLc+7n5lbgX/kP9A0II/PXVyIiomJNqVRiavAUdHYzRGQvUxj8f2+QJs6GiOwlg9+6DEwLCUKHDh3YnYw0MIF5C8LDw9GqVSv06tULoaGhaNCgAUxNTXH16lXExcUhLS0NGRkZAABfX1+4uLhg7ty5OHPmDGrXro3z589jx44d8PPzw+bNm7Xab926NTZs2ICAgADUr18fMpkMnTp1gru7O5o0aYKmTZviwIEDaNq0KVq2bImUlBRs27YNvr6+2LJlS77OpWPHjpg8eTKmTZuGKlWqoGPHjpDL5bh37x4uXbqE2NhYTJ8+Pd8JTNWqVREcHIxJkyahTp06CAgIwJMnTxAeHo6srCz8/PPPMDQsuk9Px5UN9B1C3olswDcUqNUt53GtboAQwKbAPDfxrs/35rCz7/R4RET07sXHx+PajVvYMNhcnbyoGEgSJrQwQrMVNxEfH8/B/aSh6H5CLMZcXV2RmJiIhQsXIjIyEitWrIBMJoOjoyNatmyJgIAAdV1LS0scOHAA48aNw8GDBxEdHY1atWphzZo1KFeunM4EZtGiRQCAAwcOYMuWLcjOzoaDgwPc3d0hSRK2bduG0aNHY+fOnTh9+jTq1q2Lbdu24ebNm/lOYABg6tSpaNmyJb777jvs378fDx48gJ2dHVxdXREcHIyPP/64QNdp4sSJcHFxQWhoKJYsWQJjY2M0a9YMU6dORaNGjQrUJuWi4kt/+OX5vItDRERUyFJTUwEAte11311RlavqEalIQgih7yCKqrCwMAQGBmLlypVai1WS/nh7eyMmJgb5fepeuHABJiYmMDJ69erxeaHPLmQFuhvSI+y/OzAAcCYiX3dg2IWMiKhwZWVlqbuRv89e9d575MgR9OjRA3GDzdHEWfs79bhrCjRb8RQbN27kHZgSIq+vC96ByYPAwEAEBgaiZ8+eWLdunb7DKZEUCkWhJB6FRZ8fsG/3O5yv+jZ/jITxzjGQhMi585JyGGLXWGQ6Nsb9tt/mqQ0mFEREVNg8PDxQwckRM2PvIrKXTKMbWbYQmHUoCxWdy6snSCJSYQLzCvXq1UNQUJD6sWrhSXr3DAwMNH4XJVm2mW2+6t9vtwg2B8bC5IU7LpnOzXC/9Xxkm9oUdnhERER5IpPJMCV4KoYNGwa/dRmY0MIIte1lOJOqxKxDWdhxUYFly0I4gJ+0sAsZFYrk5GSEhYW9tp61tTVGjhz51uPRpTC7kBVHXAeGiKjoYBey/+haB6aic3lMDgrhOjAlTF5fF0xgqFBER0ejVatWr60nl8uRnJz89gPSoaQnMEREVHQwgdGkVCoRHx+P1NRU2Nvbw8PDg3deSiCOgaF3ytvbO9+D6omIiIiAnO5kHKhPeWWg7wCIiIiIiIjyigkMEREREREVG0xgiIiIiIio2GACQ0RERERExQYTGCIiIiIiKjY4CxmVKAqFQt8hEBERlaj3o5J0rvRm8vpcYQJDJYaxsTEyMzOhVCr1HQoREVGJwPdeehu4kCWVGEqlEtnZ2foOg4iICABKxMLKfO+l/MrL64IJDBERERERFRscxE9ERERERMUGExgiIiIiIio2mMAQEREREVGxwQSGiIiIiIiKDSYwRERERERUbHAdGCIiIiLSO6VSidjYWNy6dQuOjo7w9PSETCbTd1hUBDGBIdKzi3ceI/neU7jYmcOtXCl9h0NERPTORUREYOSo0bh2NUVdVqGiHKHfLoS/v78eI6OiiOvAEOnJpdTHmLjlDOKvpKvLPFxtMaNbbdiYG8PO0kSP0REREb0bERERCAgIgFnlRrBq8hGMysqRlZaCR0c34FlSAjZt2sQkhjQwgSF6R55mKjQe1w7ag1KmRpjZzR2NXG2QcOU+vtlyGo8zspAtgH+mdnij45kb8wYrEREVbUqlEq6VKuOecTmU8Z8ESfpveLYQ2bgbMR12Wam4knSJ3clIjQnMK4SFhSEwMFD9uGfPnli3bp36cXx8PCZMmICTJ08iPT0dXl5eiI6O1kOk7z+FQgEjIyONsuL21HUZv1Or7Ic+H6BTHUf14x2nbmL42sRCOV7y7E6F0g4REdHbEh0djVatWsGh73yYOFXX2v78xlncXj0OUVFR8Pb2fvcBUpHEr2jzoGvXrqhXrx5q166tLnv48CF8fX2RmZmJfv36wc7ODi4uLu8kHkmSin2y9PTpUyxZsgR//fUXjh8/jgsXLkAIgStXrui8jgYGBggKCgKQk1impKRo1SmOGrnaaDxu7Gqrp0iIiIjevVu3bgEAjMrKdW43KiPXqEcEMIHJEz8/PwwcOFCjLCEhAWlpaZg1axbGjx+vn8CKsdTUVIwdOxYAIJfLYWNjg/T09FzrGxgYIDg4GEDOtzXFMYF5sUvYpdR/0eX7w0i4cl/jDsyxF8bDvGkXMiIioqLO0THnPTArLUXnHZisuyka9YgArgNTYDdv3gQAODg46DmS4qlMmTLYu3cv7t27h+TkZDRq1EjfIb115saG6p86ztbwcLXF5K1nsOPUTaQ+zsCOUzcxZevf8HC1xV+T2mrUL8gPERFRUefp6YkKFeV4dHQDhMjW2CZENh4d3YgKchd4enrqKUIqipjAFIAkSRgwYAAAIDAwEJIkQZIkjS5dqampGDVqFKpUqQITExOUKVMG3bt3x5kzZ7Tai4qKwqBBg1CtWjVYWlrC0tISDRs2xLJlyzTqRUdHQ5IkAEBMTIz6uJIkISwsDAAQHBysFYtKWFiYRl0ASE5OhiRJGDhwIM6dOwd/f3+UKVMGkiQhOTlZXW/r1q1o06YNbGxsYGpqitq1a2P+/PlQKpUFuoaWlpZo164dbG1LbpepJX0boFZ5Kwxfm4jGM/Zj+NpE1CpvhSV9G3AGMiIiKhFkMhlCv12IZ0kJuBsxHc9vnEX286d4fuMs7kZMx7OkBIQuXMAB/KSBX9MWQFBQEE6cOIGtW7eqx8cAUI/dSEpKgre3N27cuIH27dvDz88Pqamp2Lx5M/bs2YP9+/fDw8ND3d6cOXNw6dIlNGnSBN26dcODBw+we/dufPLJJzh//jwWLFigbj8oKAghISGQy+Ua3dpUMRSU6vi1atXCgAEDkJ6eDmNjYwDAN998g1mzZsHZ2Rndu3eHlZUVDh48iHHjxiE+Ph4bN258o2OXVLYWxvhtsAfXgSEiohLN398fmzZtylkHZvU4dXkFuQtCOYUy6SIoVytXrhQAxMqVK/O1rVmzZsLQ0FDs3btXo/z8+fOiVKlSwt3dXaP88uXLWm1kZWWJdu3aCZlMJlJSUjS2ARBeXl46Yw4KChIARFRUVJ5ivnLligAgAIjJkydr7bN3714BQHz44YfiyZMn6vLs7Gzx6aefCgBi06ZNOmPJjw4dOggA4sqVK6+t6+XlJfjUJSIier8oFAoRFRUl1q5dK6KiooRCodB3SFREsQtZIUtMTMSRI0cwYMAAtGvXTmNb1apVMXToUJw+fVqjK5mrq6tWO4aGhvj000+hVCoRFRX11uN2cHDApEmTtMq///57AMBPP/0Ec3NzdbkkSZg9ezYkSUJ4ePhbj4+IiIjebzKZDN7e3ujduze8vb3ZbYxyxS5khezo0aMAgNu3b6tnzXrRuXPn1P+qpmV+/Pgx5s+fj8jISCQlJeHJkyca+6gmDHib6tatq+4y9qKjR4/CwsICy5cv17mfmZmZ+pyIiIiICkKpVCI2Nha3bt2Co6MjPD09mcBQrpjAFDLVVMA7d+7Ezp3aCxeqqJKUzMxMeHt74/jx46hfv756TRlDQ0MkJyfj119/xfPnz9963OXKldNZnp6eDoVCgZCQkFz3fTnhojxKPQekXwZsKwH22lNHEhERlQQREREYM+pLJF+9ri5zqeiMBd8u4vgX0okJTCGzsrICACxevBjDhw9/bf2tW7fi+PHjGDJkCH7++WeNbevWrcOvv/6ar+MbGOT0ClQoFFrbHj58mOt+qtnNXmZlZQVJknD37t18xUG5eHIXeJoO7BgJpBz+r1zeHOgcCpStqq/IiIiI3rmIiAgEBASgs5shwgebo7a9DGdSlZh56A4CAgKwiYP4SQeOgSlkqtnF4uLi8lQ/KSkJANClSxetbbGxsTr3MTAwyHX6YhubnJXdb9y4obUtMTExTzG9yMPDA/fu3cPFixfzvW+JlPnk1T/zKgM/egB3/gZ6hAFjLuT8e+fvnPLX7U9ERPSeUCqVGDPqS3R2M0RkL1M0cTaEpbGEJs6GiOxpis5VDTF29MgCL9lA7y/egSlkjRs3hoeHB8LDw9GlSxf07NlTY3t2djZiY2Ph5eUFIGcVegA4dOgQfH191fViYmK07sio2Nra4vr16zq3NWzYEACwatUq9OvXT31HJi4uDmvWrMn3+YwYMQK///47Bg0ahMjISNjZ2Wlsv337Nu7fv48aNWrku+330szyr68jsgHfUKBWt5zHtboBQgCbAl+/f3Dud9GIiIiKk9jYWCRfvY7wweYweKkniIEkYUJzIzRbcQ2xsbHw9vbWT5BUJDGBeQvCw8PRqlUr9OrVC6GhoWjQoAFMTU1x9epVxMXFIS0tDRkZGQAAX19fuLi4YO7cuThz5gxq166N8+fPY8eOHfDz88PmzZu12m/dujU2bNiAgIAA1K9fHzKZDJ06dYK7uzuaNGmCpk2b4sCBA2jatClatmyJlJQUbNu2Db6+vtiyZUu+zqVjx46YPHkypk2bhipVqqBjx46Qy+W4d+8eLl26hNjYWEyfPr1ACczYsWPVXdNOnz6tLrO0tAQAjB8/HtWrv6djQyo203wsb66fOIiIiPTk1q1bAIDa9roH66vKVfWIVJjAvAWurq5ITEzEwoULERkZiRUrVkAmk8HR0REtW7ZEQECAuq6lpSUOHDiAcePG4eDBg4iOjkatWrWwZs0alCtXTmcCs2jRIgDAgQMHsGXLFmRnZ8PBwQHu7u6QJAnbtm3D6NGjsXPnTpw+fRp169bFtm3bcPPmzXwnMAAwdepUtGzZEt999x3279+PBw8ewM7ODq6urggODsbHH39coOu0adMmpKSkaJS9eL4DBw4sfgnMN6+ZMU51h+Xqkf/uwAD/jYcZGs1xMEREVCI4OjoCAM6kKtHEWfsj6ZlUpUY9IhVJCCH0HURRFRYWhsDAQKxcuVJj1XvSL29vb8TExKBYPnWf3AU29AfSzgM+83LuvKQcBnaNA8pWBwJzn7mOiIjofaJUKlGlkgvcze4gsqepRjeybCHgtz4DZzIccDHpCqdUJg0cxJ8HgYGBkCQJvXr10ncoJZZCoYAkSZAkCTExMfoOp+AsygAf/QY4uOeMeVlQNedfB3fgo1X6jo6IiOidkclkWPDtIuy4oIDf+gzEXVPg8XOBuGs5j3dcUGD+wlAmL6SFXcheoV69eggKClI/Vi08Se+egYGBxu+iWLOwA/pHch0YIiIq8fz9/bFp0yaMGfUlmq34b4IiV3kFbNoUyimUSSd2IaNCkZycjLCwsNfWs7a2xsiRI996PERERFR8KJVKxMbG4tatW3B0dISnpyfvvFCumMBQoYiOjkarVq1eW08ulyM5OfntB0RERERE7yUmMEREREREVGxwED8RERERERUbTGCIiIiIiKjYYAJDRERERETFBhMYIiIiIiIqNrgODJUYSqUS2dnZ+g6DiIgIAGBkZKTvEN46vvdSfuXldcEEhkqMa9euITMzU99hEBERAQCqVq2q7xDeOr73Un7l5XXBBIZKjMzMTMhkMhga8mlPRET6pVAo9B3CO8H3XsqPvL4u+GyiEsXQ0LBE3LInIiIqKvjeS4WNg/iJiIiIiKjYYAJDRERERETFBhMYIiIiIiIqNpjAEBERERFRscEEhoiIiIiIig3OQkZEREREeqdUKhEfH4/U1FTY29vDw8MDMplM32FREcQEhug9dOXeM1x/mAnn0sZwtTPTdzhERESvtGvXLgQFh+DmjevqsvJOzggJDoKPj48eI6OiiAkM0XvkwTMFgnYnI+HaY3VZfSdLjGvljNKmr36525hzjn4iInr3du3ahWHDhsGsciM49B0Jo7JyZKWl4MHRDRg2bBiWLVvGJIY0SEIIoe8giN6FCxcuwMTE5L1eTOvLLZeQlJ6BaV3d0cjVBglX7uObLafxOCML2a95pe//rE6+j2dmxFv7REQFkZWVBblcru8w3rrXvfcqlUo0adoMD8zKo4z/JEjSf8OzhcjG3YjpsM64haNHDrM7WQmQ19cF78C8QlhYGAIDA9WPe/bsiXXr1qkfx8fHY8KECTh58iTS09Ph5eWF6OhoPUT6/lMoFFp//Jh7a7py7xkSrj3GD30+QKc6jgCATnUcISAwfG3ia/dvs+RUvo95ZET9fO9DRESkEh8fj5s3rsOh70iN5AUAJMkAVk164ObqcYiPj0ezZs30FCUVNUxg8qBr166oV68eateurS57+PAhfH19kZmZiX79+sHOzg4uLi7vJB5Jkop9snTixAls3rwZ+/btw+XLl/Hw4UM4OTmhY8eOmDhxIpycnDTqGxgYICgoCEBOYpmSkqKPsIu06w8zAQCNXG00yhu72uojHCIiotdKTU0FABiV1f2tu1EZuUY9IoAJTJ74+flh4MCBGmUJCQlIS0vDrFmzMH78eP0EVox9+umnOHbsGBo1aoRevXrBxMQE8fHxWLJkCTZu3IjY2FhUr15dXd/AwADBwcEAgOjoaCYwOjiXNgYAJFy5r74DAwDHrqTnaf+CdCEjIiJ6E/b29gCArLQUmDhV19qedTdFox4RwASmwG7evAkAcHBw0HMkxVPfvn2xZs0aVK5cWaN8zpw5GD9+PMaMGYOdO3fqKbriydXODI0qlMLkrachINDY1RbHrqRjytYzqO9kiekfurxyf45nISKid83DwwPlnZzx4OgGnWNgHh3diPLOFeDh4aHHKKmo4UKWBSBJEgYMGAAACAwMhCRJkCRJo0tXamoqRo0ahSpVqsDExARlypRB9+7dcebMGa32oqKiMGjQIFSrVg2WlpawtLREw4YNsWzZMo160dHRkCQJABATE6M+riRJCAsLAwAEBwdrxaISFhamURcAkpOTIUkSBg4ciHPnzsHf3x9lypSBJElITk5W19u6dSvatGkDGxsbmJqaonbt2pg/fz6USmWBruHw4cO1khcAGDt2LMzNzRETE1Ogdku6kI4uqGJniuFrE9F4xn4MX5uIKnammOHjChtzo1f+EBERvWsymQwhwUF4lpSAuxHT8fzGWWQ/f4rnN87ibsR0PEtKQEjQFA7gJw28A1MAQUFBOHHiBLZu3aoeHwNAPQYmKSkJ3t7euHHjBtq3bw8/Pz+kpqZi8+bN2LNnD/bv36/xTcKcOXNw6dIlNGnSBN26dcODBw+we/dufPLJJzh//jwWLFigbj8oKAghISGQy+Ua3dpUMRSU6vi1atXCgAEDkJ6eDmPjnC5J33zzDWbNmgVnZ2d0794dVlZWOHjwIMaNyxlUt3Hjxjc69oskSYJMJoOBAXPrgrA2M0SoXxWuA0NERMWGj48Pli1blrMOzOpx6vLyzhWwiFMokw5MYAogODgYYWFh2Lp1q87xMf3798ft27exZ88etGvXTl0+adIkNGzYEEOHDsWpU//N+LRkyRK4urpqtKFQKODj44NFixbhyy+/RMWKFeHi4oLg4GCEhISo/19YDh8+jMmTJ2Pq1Kka5fv27cOsWbPw4YcfYtOmTTA3NweQMwPY559/jqVLl2Lz5s3o3r17ocSxadMmPH78GD169CiU9koqVzszJi5ERFRs+Pj4oEOHDoiPj0dqairs7e3h4eHBOy+kE7/mLmSJiYk4cuQIBgwYoJG8AEDVqlUxdOhQnD59WqMr2cvJCwAYGhri008/hVKpRFRU1FuP28HBAZMmTdIq//777wEAP/30kzp5AXLulMyePRuSJCE8PLxQYrh27RpGjBgBMzMzTJs2rVDaJCIiouJBJpOhWbNm8PPzQ7NmzZi8UK54B6aQHT16FABw+/ZtnXdIzp07p/5XNS3z48ePMX/+fERGRiIpKQlPnjzR2Ec1YcDbVLduXXWXsRcdPXoUFhYWWL58uc79zMzM1Of0JtLT0+Hj44PU1FSsWrUK1apVe+M2iYiIqHhQKpW8+0J5xgSmkKWn50xZu3PnzlfOoqVKUjIzM+Ht7Y3jx4+jfv366jVlDA0NkZycjF9//RXPnz9/63GXK1dOZ3l6ejoUCgVCQkJy3fflhCu/7t+/j7Zt2+Lvv//GkiVL0Ldv3zdqj94ew/uXIHt4FcrSFaGwqaLvcIiI6D2wa9cuTA2egms3bqnLKjg5YkrwVI5/IZ2YwBQyKysrAMDixYsxfPjw19bfunUrjh8/jiFDhuDnn3/W2LZu3Tr8+uuv+Tq+avC7QqHQ2vbw4cNc91PNbvYyKysrSJKEu3fv5iuOvEpPT0fbtm2RmJiIH374AZ988slbOQ7lj8EzzbVjpIwHsD4UDJNbCeqy546N8KBFMISptbos24yLZhIRUd7t2rULw4YNQ2c3Q2wYbI7a9jKcSVViZuxdDBs2DMs4iJ90YAJTyFSzi8XFxeUpgUlKSgIAdOnSRWtbbGyszn0MDAxynb7YxiZnFfYbN25obUtMTHxtPC/z8PDA77//josXL8LNzS3f+7/Ki8nL4sWL8fnnnxdq+yWZlPX0jfZ3+K35Sw0aACZWQI8woGIz4OoRmGwfiXKbfAGRra52K/CvAh1PGJm/vhIREb1XlEolpgZPQWc3Q0T2MoXB/3+Z2sTZEJG9ZPBbl4FpIUHo0KEDu5ORBiYwhaxx48bw8PBAeHg4unTpgp49e2psz87ORmxsLLy8vAAAcrkcAHDo0CH4+vqq68XExGjdkVGxtbXF9evXdW5r2LAhAGDVqlXo16+f+o5MXFwc1qxZk+/zGTFiBH7//XcMGjQIkZGRsLOz09h++/Zt3L9/HzVq1MhXu+np6WjTpg1OnDiBRYsW5SnZo7xzXNmgcBsU2YBvKFCrW87jWt0AIYBNgYVy3JvDzr5hgEREVNzEx8fj2o1b2DDYXJ28qBhIEia0MEKzFTcRHx+PZs2a6SlKKoqYwLwF4eHhaNWqFXr16oXQ0FA0aNAApqamuHr1KuLi4pCWloaMjAwAgK+vL1xcXDB37lycOXMGtWvXxvnz57Fjxw74+flh8+bNWu23bt0aGzZsQEBAAOrXrw+ZTIZOnTrB3d0dTZo0QdOmTXHgwAE0bdoULVu2REpKCrZt2wZfX19s2bIlX+fSsWNHTJ48GdOmTUOVKlXQsWNHyOVy3Lt3D5cuXUJsbCymT5+e7wTG398fJ06cQPXq1ZGenq5zwoORI0fC2to6X+3SW1TxpTcPeXPd9YiIiPIgNTUVAFDbXvfdFVW5qh6RChOYt8DV1RWJiYlYuHAhIiMjsWLFCshkMjg6OqJly5YICAhQ17W0tMSBAwcwbtw4HDx4ENHR0ahVqxbWrFmDcuXK6UxgFi1aBAA4cOAAtmzZguzsbDg4OMDd3R2SJGHbtm0YPXo0du7cidOnT6Nu3brYtm0bbt68me8EBgCmTp2Kli1b4rvvvsP+/fvx4MED2NnZwdXVFcHBwfj444/z3WZycjKAnNnYcpsgYODAgUxgCqigXblUdN5JuXrkvzswAJByuNCPS0REJYe9vT0A4EyqEk2ctT+SnklVatQjUpGEEELfQRRVYWFhCAwMxMqVK7UWqyT98fb2RkxMDPL71L1w4QJMTExgZGT0liJ7f7w8iN/mj5EwfngZks/8nDsvKYchdo1FZunKuN/2W3U9DuInIsqbrKwsdTfy99mr3nuVSiWaN/VAPYu7GmNgACBbCPity8DJp2Vx6MhRjoEpIfL6uuBClnkQGBgISZLQq1cvfYdSYikUCkiSBEmSEBMTo+9w3nvZZrYaP/fbLUKmbbWcMS8LqgKbApFpWw3324Vq1CMiIsormUyGKcFTseOiAn7rMhB3TYHHzwXiruU83nFRgclBIUxeSAu7kL1CvXr1EBQUpH6sWniS3j0DAwON3wW9W9mmNrjns5zrwBARUaHy8fHBsmXLMDV4Cpqt+G8dmIrO5bFsWQinUCad2IWMCkVycjLCwsJeW8/a2hojR4586/Howi5kRERUVLALmSalUon4+HikpqbC3t4eHh4evPNSAuX1dcE7MFQokpOTcx2M/yK5XK63BIaIiIiKJplMxqmSKc+YwFCh8Pb2zvegeiIiIiKi/OIgfiIiIiIiKjaYwBARERERUbHBBIaIiIiIiIoNJjBERERERFRsMIEhIiIiIqJig7OQUYmiUCj0HQIREVGJej8qSedKbyavzxUmMFRiGBsbIzMzE0qlUt+hEBERlQh876W3QRJcvINKCKVSiezsbH2HQUREBACvXZ3+fcD3XsqvvLwumMAQEREREVGxwUH8RERERERUbDCBISIiIiKiYoMJDBERERERFRtMYIiIiIiIqNhgAkNERERERMUG14EhIiIiIr1SKpWIjY3FrVu34OjoCE9PT8hkMn2HRUUUExii99DFO4+RfO8pXOzM4VaulL7DISIiylVERARGjhqNa1dT1GUVKsoR+u1C+Pv76zEyKqq4DgzReyT9SSZGhCfi0KW76rIWVcrgu971YWthrMfIiIiItEVERCAgIABmlRvBqslHMCorR1ZaCh4d3YBnSQnYtGkTkxjSwgSGqBh4mqnIU73BYX/iwp3HmNq1Nhq52iDhyn1M2XoG1RxK4ZcBDQEA5sa88UpERPqnVCrhWqky7hmXQxn/SZCk/4ZmC5GNuxHTYZeViitJl9idjDQwgXmFsLAwBAYGqh/37NkT69atUz+Oj4/HhAkTcPLkSaSnp8PLywvR0dF6iPT9p1AoYGRkpFFWkp66LuN35rnuD30+QKc6jurHO07dxPC1ierHybM7FWpsREREBREdHY1WrVrBoe98mDhV19r+/MZZ3F49DlFRUfD29n73AVKRxa9i86Br166oV68eateurS57+PAhfH19kZmZiX79+sHOzg4uLi7vJB5Jkop9snTy5EmEhobir7/+wo0bN/DkyRM4OTmhQYMG+Oqrr9CwYUON+gYGBggKCgKQk1impKToapYANHK10Xjc2NVWT5EQERHl7tatWwAAo7JynduNysg16hGpMIHJAz8/PwwcOFCjLCEhAWlpaZg1axbGjx+vn8CKsYSEBOzatQtNmzaFl5cXLCwscPnyZWzfvh2bNm3CqlWr0LdvX3V9AwMDBAcHA8j5xqakJTD/TO3w2jqXUv9Fl+8PI+HKfY07MMeupAMAtg1vjir2lm8tRiIiovxwdMx5r8pKS9F5BybrbopGPSIVJjAFdPPmTQCAg4ODniMpnvr27YshQ4Zolf/9999o2LAhxowZg48//hiSJOkhuqInL+NW6jhbo0WVMpiy9QwEBBq72uLYlXQEbf0bnm5lUMfZ+u0HSkRElEeenp6oUFGOe0c36BwD8+joRlSQu8DT01OPUVJRxIUsC0CSJAwYMAAAEBgYCEmSIEmSRpeu1NRUjBo1ClWqVIGJiQnKlCmD7t2748yZM1rtRUVFYdCgQahWrRosLS1haWmJhg0bYtmyZRr1oqOj1R/oY2Ji1MeVJAlhYWEAgODgYK1YVMLCwjTqAkBycjIkScLAgQNx7tw5+Pv7o0yZMpAkCcnJyep6W7duRZs2bWBjYwNTU1PUrl0b8+fPh1KpLNA1NDU11Vleq1Yt1KhRA6mpqXj06FGB2i7JvutdHzXLW2H42kQ0nrEfw9cmomZ5KyzqVV/foREREWmQyWQI/XYhniUl4G7EdDy/cRbZz5/i+Y2zuBsxHc+SEhC6cAEH8JMW3oEpgKCgIJw4cQJbt25Vj48BoB4Dk5SUBG9vb9y4cQPt27eHn58fUlNTsXnzZuzZswf79++Hh4eHur05c+bg0qVLaNKkCbp164YHDx5g9+7d+OSTT3D+/HksWLBA3X5QUBBCQkIgl8s1urWpYigo1fFr1aqFAQMGID09HcbGOdPufvPNN5g1axacnZ3RvXt3WFlZ4eDBgxg3bhzi4+OxcePGNzr2i5KSknD+/HlUqFABpUuXLrR2SwpbC2P8NtiD68AQEVGx4O/vj02bNuWsA7N6nLq8gtwFoZxCmXIjKFcrV64UAMTKlSvzta1Zs2bC0NBQ7N27V6P8/PnzolSpUsLd3V2j/PLly1ptZGVliXbt2gmZTCZSUlI0tgEQXl5eOmMOCgoSAERUVFSeYr5y5YoAIACIyZMna+2zd+9eAUB8+OGH4smTJ+ry7Oxs8emnnwoAYtOmTTpjyYvExEQRFBQkvvnmG/Hxxx+LUqVKCXNzc7Fz585c9/Hy8hJ86hIREb0/FAqFiIqKEmvXrhVRUVFCoVDoOyQqwtiFrJAlJibiyJEjGDBgANq1a6exrWrVqhg6dChOnz6t0ZXM1dVVqx1DQ0N8+umnUCqViIqKeutxOzg4YNKkSVrl33//PQDgp59+grm5ubpckiTMnj0bkiQhPDy8wMc9ceIEQkJCMHPmTKxZswbm5ubYsmULfHx8CtwmERERFS8ymQze3t7o3bs3vL292W2MXoldyArZ0aNHAQC3b99Wz5r1onPnzqn/VU3L/PjxY8yfPx+RkZFISkrCkydPNPZRTRjwNtWtW1fdZexFR48ehYWFBZYvX65zPzMzM/U5FcTAgQMxcOBAZGRk4OLFi1iwYAE+/PBDzJkzB2PHji1wu0RERFR8KJVKxMbG4tatW3B0dISnpyeTGMoVE5hClp6eM2Xtzp07sXNn7osPqpKUzMxMeHt74/jx46hfv756TRlDQ0MkJyfj119/xfPnz9963OXKldNZnp6eDoVCgZCQkFz3fTnhKghTU1O4u7sjLCwMaWlp+Prrr9GxY0eNtXcIQOo5IP0yYFsJsNeecpKIiKi4iYiIwJhRXyL56nV1mUtFZyz4dhHHwJBOTGAKmZWVFQBg8eLFGD58+Gvrb926FcePH8eQIUPw888/a2xbt24dfv3113wd38Agp1egQqHQ2vbw4cNc98ttumIrKytIkoS7d+/mK4430b59e+zatQuxsbElO4F58sI1f5oO7BgJpBz+r0zeHOgcCpi/sFClRZl3FR0REdEbi4iIQEBAADq7GSJ8sDlq28twJlWJmYfuICAgAJs4kJ90YAJTyFSzi8XFxeUpgUlKSgIAdOnSRWtbbGyszn0MDAxynb7YxiZnFfYbN25obUtMTHxtPC/z8PDA77//josXL8LNzS3f+xeEqsucoeF78vTMLOAdqnmV//u/ZACYWAE9woCKzYCrR4DtI4EfPQCR/V+9b/LZ3dDYomCxERERvSGlUokxo75EZzdDRPYyhcH/f5naxNkQkT1l8FufgbGjR6Jr167sTkYa3pNPiEVH48aN4eHhgfDwcHTp0gU9e/bU2J6dnY3Y2Fh4eXkBAORyOQDg0KFD8PX1VdeLiYnRuiOjYmtri+vXr+vc1rBhQwDAqlWr0K9fP/Udmbi4OKxZsybf5zNixAj8/vvvGDRoECIjI2FnZ6ex/fbt27h//z5q1KiRr3YPHz4MDw8PrSTlxIkTWLp0KQwNDbUmQSi2ZpZ/8zZENuAbCtTqlvO4VjdACGBT4JsdKzj3u3JERERvU2xsLJKvXkf4YHN18qJiIEmY0NwIzVZcQ2xsLLy9vfUTJBVJTGDegvDwcLRq1Qq9evVCaGgoGjRoAFNTU1y9ehVxcXFIS0tDRkYGAMDX1xcuLi6YO3cuzpw5g9q1a+P8+fPYsWMH/Pz8sHnzZq32W7dujQ0bNiAgIAD169eHTCZDp06d4O7ujiZNmqBp06Y4cOAAmjZtipYtWyIlJQXbtm2Dr68vtmzZkq9z6dixIyZPnoxp06ahSpUq6NixI+RyOe7du4dLly4hNjYW06dPz3cC88UXXyAtLQ3NmzdHxYoVoVAocP78eezduxdCCCxcuFC9rg79v4rNNB/Lm+snDiIiokJw69YtAEBte913V1TlqnpEKkxg3gJXV1ckJiZi4cKFiIyMxIoVKyCTyeDo6IiWLVsiICBAXdfS0hIHDhzAuHHjcPDgQURHR6NWrVpYs2YNypUrpzOBWbRoEQDgwIED2LJlC7Kzs+Hg4AB3d3dIkoRt27Zh9OjR2LlzJ06fPo26deti27ZtuHnzZr4TGACYOnUqWrZsie+++w779+/HgwcPYGdnB1dXVwQHB+Pjjz/Od5tjxoxBREQEjh07hh07dkCpVMLR0RG9evXC8OHD0bRp03y3WWTlt1uXyst3U64e+e8ODKA5HuZNj0VERPSOOTo6AgDOpCrRxFn7I+mZVKVGPSIVSQgh9B1EURUWFobAwECsXLlSY9V70i9vb2/ExMTgvX/qvjiIf0N/IO084DMv585LymFg1zigbHXgoxcmeuAgfiIiKiaUSiWqVHKBu9kdRPY01ehGli0E/NZn4EyGAy4mXeEYGNLAhSzzIDAwEJIkoVevXvoOpcRSKBSQJAmSJCEmJkbf4bwbFmX++/noN8DBPWfMy4KqOf86uAMfrdKsR0REVEzIZDIs+HYRdlxQwG99BuKuKfD4uUDctZzHOy4oMH9hKJMX0sIuZK9Qr149BAUFqR+X6Cl99czAwEDjd1HiWNgB/SO5DgwREb1X/P39sWnTJowZ9SWarfhvgiJXeQVs2hTKKZRJJ3Yho0KRnJyMsLCw19aztrbGyJEj33o8REREVHwolUrExsbi1q1bcHR0hKenJ++8UK6YwFChiI6ORqtWrV5bTy6XIzk5+e0HRERERETvJSYwRERERERUbHAQPxERERERFRtMYIiIiIiIqNhgAkNERERERMUGExgiIiIiIio2uA4MlRhKpRLZ2dn6DoOIiAgAYGRkpO8Q3jq+91J+5eV1wQSGSoxr164hMzNT32EQEREBAKpWrarvEN46vvdSfuXldcEEhkqMzMxMyGQyGBryaU9ERPqlUCj0HcI7wfdeyo+8vi74bKISxdDQsETcsiciIioq+N5LhY2D+ImIiIiIqNhgAkNERERERMUGExgiIiIiIio2mMAQEREREVGxwQSGiIiIiIiKDc5CRkRERER6pVQqER8fj9TUVNjb28PDwwMymUzfYVERxQSGiN7YlXvPcP1hJpxLG8PVzkzf4RARUTGya9cuBAWH4OaN6+qy8k7OCAkOgo+Pjx4jo6KKCQwRFdiDZwpM3HUFiTf+VZfVd7LEDB9XWJvxzwsREb3arl27MGzYMJhVbgSHviNhVFaOrLQUPDj6f+zdf1zUZb7//8ebQcVEEiEEQwd2UbcVU2+poK2K9rEMIxGppW8/FEtr9+OnzM1zWo8GmLtWR02rc9psS6w1SlGBo6btKiAmkCfpJHvyFwkqoiioefyFM8z3D85MTgMKrjggz/vtNjec67re73nNwDi8eF+v61rFtGnTWLZsmZIYcWHYbDabu4MQuRn27dtHhw4dtJnWP+DCZavT/X/6j+85UHWJP07ox+BQX3YePMXsdbsJ8+vAGzE/c4zr2E7TAERErnT58mXMZrO7w2h2V/vstVqtRA4dxumO3fGPm4Nh/FiabbPVcnLtfLpcrKBgx5eaTtZGNPZ9oSL+q0hNTcUwDMctISHBqb+wsJDRo0fj5+eHYRhERUW5J9A2wGKxOH0vDMNwd0ht0n3vfut0+/rI//DHCf0Yd3cQAZ29GHd3EH+YEM7XR/7HaZyIiMhPFRYWcrT8CD6RjzolLwCG4YFP5CMcPXKYwsJCN0UoLZXmeDTC+PHjGTBgAOHh4Y62M2fOEBMTQ01NDU8++SR+fn6EhITclHgMw2DkyJHk5OTclMe7WcaNG8fGjRvp0KEDFy9edOrz8PAgKSkJqEssy8rK3BGi1GNwqK/T/SGhXd0UiYiItCaVlZUAtLuj/r+4t/M3O40TsVMC0wixsbFMnjzZqW3nzp2cOHGCBQsW8PLLL7snsFvIhx9+yKZNm/Dy8qK+WY0eHh4kJycDkJOTowTGTbb85m7Hv0urL/L0Z/vYefAU4+4OcrR/dbAagA9+3ZuQrl43PUYREWkdAgICALh8oowOd/7Cpf/yyTKncSJ2mkJ2nY4ePQpAYGCgmyNp/Y4cOcLMmTOZMWMG3bp1c3c4chUd25kct7u6dWJwj87MzdzN+m+PUnn2Iuu/PcormcUM6dmZu7p1cowVERH5qYiICLrfGcwPBauw2Wqd+my2Wn4oWE334B5ERES4KUJpqZTAXAfDMJg0aRIAiYmJjpqMK6d0VVZW8uKLLxIWFkaHDh3w9/dn4sSJFBcXu5wvOzubKVOm0KdPH7y9vfH29mbQoEEsW7bMaVxOTo6j9iM3N9epHiQ1NRWA5ORkl1js7DU99rEApaWlGIbB5MmT2bNnD3Fxcfj7+2MYBqWlpY5xmZmZ3Hffffj6+uLl5UV4eDgLFy7EarW6PE5TPf3009xxxx3Mnz//Hz6X3FwpY0MI8/Ni+idFDPnDFqZ/UkSYnxfJD4S4OzQREWnhTCYTKclJXCjZycm187lU/h21l85zqfw7Tq6dz4WSnaQkvaICfnGhKWTXISkpiW+++YbMzExHfQzgqIEpKSkhKiqK8vJy7r//fmJjY6msrGTNmjVs3ryZLVu2OP014fXXX+fAgQNERkYyYcIETp8+zaZNm3j22WfZu3cvixYtcpw/KSmJlJQUzGaz07Q2ewzXy/74ffv2ZdKkSVRXV9O+fXsAZs+ezYIFCwgODmbixIn4+Piwbds2Zs2aRWFhIatXr77ux122bBl//etfyc7OpmNH7R/S2nTp6MmS2DDtAyMiItclOjqaZcuW1e0D85dZjvbuwT1YqiWUpQFKYK5DcnIyqampZGZm1lsf89RTT3Hs2DE2b97MmDFjHO1z5sxh0KBBTJ06lW+//XFlpnfffZfQ0FCnc1gsFqKjo1m6dCkvvPACPXv2JCQkhOTkZFJSUhz/vlG+/PJL5s6dy7x585za//rXv7JgwQIefPBB0tPTue222wCw2Wz89re/5U9/+hNr1qxh4sSJTX7MsrIyXnrpJZ577jlGjhx5Q56HuEeoX0clLiIicl2io6N54IEHKCwspLKykoCAACIiInTlRRqkKWQ3WFFRETt27GDSpElOyQtA7969mTp1Krt373aaSvbT5AXA09OT5557DqvVSnZ2drPHHRgYyJw5c1za33nnHQDee+89R/ICddPoXnvtNQzDIC0trcmPZ7PZePrpp/H19eX111+//sBFRESk1TOZTAwbNozY2FiGDRum5EWuSldgbrCCggIAjh07Vu8Vkj179ji+2pdlPnv2LAsXLiQjI4OSkhLOnTvndIx9wYDm1L9/f8eUsSsVFBTQqVMnPvjgg3qP69ixo+M5NcW7777Lli1b+Pzzz+ncuXOTjxcREZFbh9Vq1RUYaTQlMDdYdXXdErIbNmxgw4YNDY6zJyk1NTVERUWxa9cuBg4c6NhTxtPTk9LSUlasWMGlS5eaPe6GVv+qrq7GYrGQkpLS4LE/Tbiupby8nH/+539m8uTJjB07tknHSsvkeeoApjOHsN7eE4tvmLvDERGRVmTjxo3MS36Fw+UVjrYedwbxSvI81cBIvZTA3GA+Pj4AvP3220yfPv2a4zMzM9m1axfPPPMM77//vlPfp59+yooVK5r0+B4edbMCLRaLS9+ZM2caPK6hne19fHwwDIOTJ082KY6r2b9/P//zP/9Damqq04po9cVz6tQpunTpcsMeW24sj4un8P3rC3So2OlouxQ0mFNjllLr5XuVI0VEROqSl2nTpvFQL09WPX0b4QEmiiut/DHvJNOmTWOZCvmlHkpgbjD76mL5+fmNSmBKSkoAePjhh1368vLy6j3Gw8OjweWLfX3rfmksLy936SsqKrpmPD8VERHB559/zv79++nVq1eTj69PUFAQTz/9dL19n332GRcuXHAsjNChQ4cb8phyYxiXzzvd9/3bi3Q4tR8eSYWew+DQDjr8xwx8/zaT6gf+zeV4W7vbXNpERKRtslqtzEt+hYd6eZKR4IXH//7xMjLYk4wEE7GfXuTVlCQeeOABTScTJ0pgbrAhQ4YQERFBWloaDz/8ML/+9a+d+mtra8nLy3OsumU2mwHYvn07MTExjnG5ubkuV2TsunbtypEjR+rtGzRoEAAfffQRTz75pOOKTH5+PitXrmzy83n++ef5/PPPmTJlChkZGfj5+Tn1Hzt2jFOnTnHXXXc1+px9+vThz3/+c719f/vb3zh27FiD/eJeQcvvcW18JBX6Tqj7d98JYLPRIT2x3rFHp33XvAGKiEirUVhYyOHyClY9fZsjebHzMAx+/6t2DPvwKIWFhQwbNsxNUUpLpASmGaSlpTFq1CgSEhJYsmQJ99xzD15eXhw6dIj8/HxOnDjBxYsXAYiJiSEkJIQ33niD4uJiwsPD2bt3L+vXryc2NpY1a9a4nH/06NGsWrWK+Ph4Bg4ciMlkYty4cfTr14/IyEiGDh3K1q1bGTp0KCNGjKCsrIysrCxiYmJYt25dk57L2LFjmTt3Lq+++iphYWGMHTsWs9lMVVUVBw4cIC8vj/nz5zcpgZFbTM+ffKiY73VPHCIi0qpUVlYCEB5Q/9UVe7t9nIidEphmEBoaSlFREYsXLyYjI4MPP/wQk8lEUFAQI0aMID4+3jHW29ubrVu3MmvWLLZt20ZOTg59+/Zl5cqVdOvWrd4EZunSpQBs3bqVdevWUVtbS2BgIP369cMwDLKyspg5cyYbNmxg9+7d9O/fn6ysLI4ePdrkBAZg3rx5jBgxgrfeeostW7Zw+vRp/Pz8CA0NJTk5mccff/z6XyxpVSoSv3b82/P099yx7hE4tOPHKzAAZV8CcGLCaixdfnazQxQRkVYiICAAgOJKK5HBrr+SFldancaJ2Bk2m83m7iBaqtTUVBITE1m+fLnLZpXiPlFRUeTm5tLUH919+/bRoUMH2rVr10yRtT1+G56m/am9GNEL6668lH2JbeNL1HTtQ1V0/Utvi4gIXL582TGN/FZ2tc9eq9XKvUMjGNDppFMNDECtzUbspxf5r/N3sH1HgWpg2ojGvi+0kWUjJCYmYhgGCQkJ7g6lzbJYLBiGgWEY5Obmujsc+V+n7ltITdc+kJ4Ii3pDeiI1XftwavRCd4cmIiItnMlk4pXkeazfbyH204vkH7Zw9pKN/MN199fvtzA3KUXJi7jQFLKrGDBgAElJSY779o0n5ebz8PBw+l5Iy1Dr5UtV9AfaB0ZERK5LdHQ0y5YtY17yKwz78Md9YHoGd2fZshQtoSz10hQyuSFKS0sb3NPlSl26dGHGjBnNHk99NIVMRERaCk0hc2a1WiksLKSyspKAgAAiIiJ05aUNauz7Qldg5IYoLS0lJSXlmuPMZrPbEhgRERFpmUwmk5ZKlkZTAiM3RFRUVJOL6kVEREREmkpF/CIiIiIi0moogRERERERkVZDCYyIiIiIiLQaSmBERERERKTVUBG/tCkWi8XdIYiIiLSpz6O29FzlH9PYnxUlMNJmtG/fnpqaGqxWq7tDERERaRP02SvNQRtZSpthtVqpra11dxgiIiIAbWJjZX32SlM15n2hBEZERERERFoNFfGLiIiIiEiroQRGRERERERaDSUwIiIiIiLSaiiBERERERGRVkMJjIiIiIiItBpKYEREREREpNXQRpYiIiIi4lZWq5W8vDwqKioICgpi+PDhmEwmd4clLZQSGJFb0P7jZymtOk+I32306tbZ3eGIiIg0aO3atcx4cSaHD5U52nr0NLPkzcXExcW5MTJpqbSRpcgtpPpcDc+nFbH9wElH26/C/HnrsYF07dTejZGJiIi4Wrt2LfHx8XT8+WB8Ih+l3R1mLp8o44eCVVwo2Ul6erqSGHGhBEbkFvLEnwv5ruIH5o0PZ3CoLzsPnuKVzGJ+2d2Hj5+OcHd4IiIiDlarldCf/Zyq9t3wj5uDYfxYmm2z1XJy7Xz8LldysOSAppOJExXxX0VqaiqGYThuCQkJTv2FhYWMHj0aPz8/DMMgKirKPYG2ARaLxel7YRiGu0NqcfYfP8v2AyeZNz6ccXcHEdDZi3F3B5Eyvi95+0+y//hZd4coIiLikJeXx+FDZfhEPuqUvAAYhgc+kY9wuKyUvLw8N0UoLZVqYBph/PjxDBgwgPDwcEfbmTNniImJoaamhieffBI/Pz9CQkJuSjyGYTBy5EhycnJuyuM1h9LSUkJDQxvsT0tLc0oYPTw8SEpKAuoSy7KysoYObbNKq84DMDjU16l9SGhXR7/qYUREpKWoqKgAoN0d5nr72/mbncaJ2CmBaYTY2FgmT57s1LZz505OnDjBggULePnll90T2C2gf//+xMbGurRfmSxCXQKTnJwMQE5OjhKYeoT43QbAzoOnGHd3kKP9q4PVTv0iIiItQVBQ3WfV5RNldLjzFy79l0+WOY0TsVMCc52OHj0KQGBgoJsjad0GDBjgSEzkH9OrW2d+FebPK5nF2LAxJLQrXx2sJinz7wzv5a+rLyIi0qIMHz6cHj3NVBWsqrcG5oeC1fQwhzB8+HA3RiktkWpgroNhGEyaNAmAxMRER03GlVO6KisrefHFFwkLC6NDhw74+/szceJEiouLXc6XnZ3NlClT6NOnD97e3nh7ezNo0CCWLVvmNC4nJ8dR+5Gbm+tUD5KamgpAcnKySyx29poe+1iom8plGAaTJ09mz549xMXF4e/vj2EYlJaWOsZlZmZy33334evri5eXF+Hh4SxcuBCr1Xp9L6I0i7ceG8gvu/sw/ZMihvxhC9M/KeKX3X1YmjDQ3aGJiIg4MZlMLHlzMRdKdnJy7XwulX9H7aXzXCr/jpNr53OhZCdLFi9SAb+40BWY65CUlMQ333xDZmamoz4GcNTAlJSUEBUVRXl5Offffz+xsbFUVlayZs0aNm/ezJYtW4iI+HFFqNdff50DBw4QGRnJhAkTOH36NJs2beLZZ59l7969LFq0yHH+pKQkUlJSMJvNTtPa7DFcL/vj9+3bl0mTJlFdXU379nXL7s6ePZsFCxYQHBzMxIkT8fHxYdu2bcyaNYvCwkJWr1593Y979OhR3n33XU6fPk337t257777CA4O/oeeS1vWtVN7Pn46QvvAiIhIqxAXF0d6enrdPjB/meVo72EOYYmWUJaG2KRBy5cvtwG25cuXN6lv2LBhNk9PT9sXX3zh1L53715b586dbf369XNq//77713OcfnyZduYMWNsJpPJVlZW5tQH2EaOHFlvzElJSTbAlp2d3aiYDx48aANsgG3u3Lkux3zxxRc2wPbggw/azp0752ivra21PffcczbAlp6eXm8sV3Pl41558/T0tM2cOdNmtVobPHbkyJE2/eiKiIjcOiwWiy07O9v2ySef2LKzs20Wi8XdIUkLpilkN1hRURE7duxg0qRJjBkzxqmvd+/eTJ06ld27dztNJatvNS5PT0+ee+45rFYr2dnZzR53YGAgc+bMcWl/5513AHjvvfe47bYfi8ANw+C1117DMAzS0tKa/Hi33Xab40rWDz/8QGVlJVlZWfTq1YvFixfzL//yL9f/ZERERKRVMZlMREVF8dhjjxEVFaVpY3JVmkJ2gxUUFABw7NixeovT9+zZ4/hqX2nr7NmzLFy4kIyMDEpKSjh37pzTMfYFA5pT//79HVPGrlRQUECnTp344IMP6j2uY8eOjufUFAEBAU6vT+fOnYmJiWHw4MGEh4ezePFi/umf/glfX9+GTyIiIiK3BKvVSl5eHhUVFQQFBTF8+HAlMdIgJTA3WHV13ZK1GzZsYMOGDQ2OsycpNTU1REVFsWvXLgYOHOjYU8bT05PS0lJWrFjBpUuXmj3ubt261dteXV2NxWIhJSWlwWN/mnD9IwIDA4mOjubjjz9m586d3H///Tfs3G1K5R6o/h66/gwCXJemFBERaSnWrl3L7158gdJDRxxtIT2DWfTmUtXASL2UwNxgPj4+ALz99ttMnz79muMzMzPZtWsXzzzzDO+//75T36effsqKFSua9PgeHnWzAi0Wi0vfmTNnGjyuoZ3tfXx8MAyDkydPNimOf4S/vz8A58+fv2mPecs4sQ/Wz4CyL39sM98Lj34MnfzcFpaIiEh91q5dS3x8PA/18iTt6dsIDzBRXGnlj9uPEx8fT7oK+aUeqoG5weyri+Xn5zdqfElJCQAPP/ywS19eXl69x3h4eDS4fLF9ylV5eblLX1FRUaNiulJERARVVVXs37+/ycder6+++gr4cVU3aUDNOdfbv0fA8b/DI6nwu311X4//HdInu44VERFxI6vVyu9efIGHenmSkeBFZLAn3u0NIoM9yfi1Fw/19uSlmTO0ZYO4UAJzgw0ZMoSIiAjS0tL47LPPXPpra2vJzc113DebzQBs377daVxubq7LFRm7rl27cuTIkXr7Bg0aBMBHH31EbW2toz0/P5+VK1c27ckAzz//PABTpkyhqqrKpf/YsWN89913TT7vV199xeXLl13aFy9ezJdffskvf/lL+vfv3+Tztil/7O56s9VCzBLoOwE6d6v7+tCbcHCb61gRERE3ysvLo/TQEWYPb4fHT2aCeBgGv7+3HQfLDjf4B11puzSFrBmkpaUxatQoEhISWLJkCffccw9eXl4cOnSI/Px8Tpw4wcWLFwGIiYkhJCSEN954g+LiYsLDw9m7dy/r168nNjaWNWvWuJx/9OjRrFq1ivj4eAYOHIjJZGLcuHH069ePyMhIhg4dytatWxk6dCgjRoygrKyMrKwsYmJiWLduXZOey9ixY5k7dy6vvvoqYWFhjB07FrPZTFVVFQcOHCAvL4/58+dz1113Nem8//RP/8SePXsYOXIkPXr04MKFC+Tn51NUVISvry8ff/xxg9Pa5Bp6DnO+b77XPXGIiIhcRUVFBQDhAfUX69vb7eNE7JTANIPQ0FCKiopYvHgxGRkZfPjhh5hMJoKCghgxYgTx8fGOsd7e3mzdupVZs2axbds2cnJy6Nu3LytXrqRbt271JjBLly4FYOvWraxbt47a2loCAwPp168fhmGQlZXFzJkz2bBhA7t376Z///5kZWVx9OjRJicwAPPmzWPEiBG89dZbbNmyhdOnT+Pn50doaCjJyck8/vjjTT7nE088wZo1a9ixY4ejvsZsNvPCCy/w0ksvaTPLxpj9k9XpTuyD96Pg0I66Ky929nqYqTlwR++bFZ2IiMhVBQUFAVBcaSUy2PVX0uJKq9M4ETvDZrPZ3B1ES5WamkpiYiLLly932vVe3CsqKorc3Fz0o1uP5dFwYi9E/2vdlZeyL2HjLAjsB09luDs6ERERB6vVStjPQujX8TgZv/ZymkZWa7MR+9lFii8Gsr/koJZUFieqgWmExMREDMMgISHB3aG0WRaLBcMwMAzDqYZIfuLRj+uSlfREWNS77mtgP5hY/z4+IiIi7mIymVj05lLW77MQ+9lF8g9bOHvJRv7huvvr91lYuHiJkhdxoSlkVzFgwACSkpIc9+0bT8rN5+Hh4fS9kAZ08qu70qJ9YEREpBWIi4sjPT2d3734AsM+/HGBolBzD9LTl2gJZamXppDJDVFaWkpqauo1x3Xp0oUZM2Y0ezwiIiLSelitVvLy8qioqCAoKIjhw4fryos0SAmM3BA5OTmMGjXqmuPMZjOlpaXNH5CIiIiI3JKUwIiIiIiISKuhIn4REREREWk1lMCIiIiIiEiroQRGRERERERaDSUwIiIiIiLSamgfGGkzrFYrtbW17g5DREQEgHbt2rk7hGanz15pqsa8L5TASJtx+PBhampq3B2GiIgIAL1793Z3CM1On73SVI15XyiBkTajpqYGk8mEp6d+7EVExL0sFou7Q7gp9NkrTdHY94V+mqRN8fT0bBOX7EVERFoKffbKjaYifhERERERaTWUwIiIiIiISKuhBEZERERERFoNJTAiIiIiItJqKIEREREREZFWQ6uQiYiIiIhbWa1WCgsLqaysJCAggIiICEwmk7vDkhZKCYzILehg1QWOnKkh+Pb2hPp1dHc4IiIiDdq4cSNJySkcLT/iaOt+ZzApyUlER0e7MTJpqZTAiNxCTl+wkLSplJ2HzzraBvfoTMrYELp01NtdRERalo0bNzJt2jQ6/nwwgU/MoN0dZi6fKON0wSqmTZvGsmXLlMSIC8Nms9ncHYTIzbBv3z46dOhwS2+m9cK6A5RUX+TV8f0YHOrLzoOnmJu5mzA/L5bEhrk7PBER+V+XL1/GbDa7O4xmd7XPXqvVSuTQYZzu2B3/uDkYxo+l2TZbLSfXzqfLxQoKdnyp6WRtRGPfFyriv4rU1FQMw3DcEhISnPoLCwsZPXo0fn5+GIZBVFSUewJtAywWi9P3wjAMd4fU4hysusDOw2d5dXw/xt0dREBnL8bdHcS88eF8degsB6suuDtEERERh8LCQo6WH8En8lGn5AXAMDzwiXyEo0cOU1hY6KYIpaXSnJJGGD9+PAMGDCA8PNzRdubMGWJiYqipqeHJJ5/Ez8+PkJCQmxKPYRiMHDmSnJycm/J4zammpoZ33nmHTz75hL179wJgNpsZOXIk//Zv/+YY5+HhQVJSElCXWJaVlbkl3pbsyJkaAAaH+jq1Dwnt6uhXPYyIiLQUlZWVALS7o/6/uLfzNzuNE7FTAtMIsbGxTJ482alt586dnDhxggULFvDyyy+7J7BW7tSpU4wdO5avvvqKYcOG8eyzzwJw8OBBPvvsM5cEJjk5GYCcnBwlMPUIvr09ADsPnmLc3UGO9q8OVjv1i4iItAQBAQEAXD5RRoc7f+HSf/lkmdM4ETslMNfp6NGjAAQGBro5ktbr6aefZufOnaxcuZL/7//7/5z6LBaLm6JqvUL9OjK4R2fmZu7Gho0hoV356mA1r2QWM6RnZ119ERGRFiUiIoLudwZzumBVvTUwPxSspntwDyIiItwYpbREqoG5DoZhMGnSJAASExMdNRlXTumqrKzkxRdfJCwsjA4dOuDv78/EiRMpLi52OV92djZTpkyhT58+eHt74+3tzaBBg1i2bJnTuJycHEftR25urlM9SGpqKgDJyckusdjZa3rsYwFKS0sxDIPJkyezZ88e4uLi8Pf3xzAMSktLHeMyMzO577778PX1xcvLi/DwcBYuXIjVar2u17CwsJB169bxxBNPuCQvAJ6eyq2vR8rYEML8vJj+SRFD/rCF6Z8UEebnRfIDIe4OTURExInJZCIlOYkLJTs5uXY+l8q/o/bSeS6Vf8fJtfO5ULKTlKRXVMAvLvRb4nVISkrim2++ITMz01EfAzhqYEpKSoiKiqK8vJz777+f2NhYKisrWbNmDZs3b2bLli1Of014/fXXOXDgAJGRkUyYMIHTp0+zadMmnn32Wfbu3cuiRYsc509KSiIlJQWz2ew0rc0ew/WyP37fvn2ZNGkS1dXVtG9fN+Vo9uzZLFiwgODgYCZOnIiPjw/btm1j1qxZFBYWsnr16iY/3meffQbAI488wsmTJ8nKyuL48eP06NGDBx98ED8/v3/o+bRVXTp6siQ2TPvAiIhIqxAdHc2yZcvq9oH5yyxHe/fgHizVEsrSACUw1yE5OZnU1FQyMzPrrY956qmnOHbsGJs3b2bMmDGO9jlz5jBo0CCmTp3Kt99+62h/9913CQ0NdTqHxWIhOjqapUuX8sILL9CzZ09CQkJITk4mJSXF8e8b5csvv2Tu3LnMmzfPqf2vf/0rCxYs4MEHHyQ9PZ3bbrsNAJvNxm9/+1v+9Kc/sWbNGiZOnNikx/vP//xPoC5xevLJJzlz5oyjz9vbmz//+c/8+te//gefVdsV6tdRiYuIiLQK0dHRPPDAAxQWFlJZWUlAQAARERG68iIN0hSyG6yoqIgdO3YwadIkp+QFoHfv3kydOpXdu3c7TSX7afICdVOonnvuOaxWK9nZ2c0ed2BgIHPmzHFpf+eddwB47733HMkL1E2je+211zAMg7S0tCY/nn1FkVmzZjF+/HhKSko4deoUf/nLX/Dw8ODJJ590SvJERETk1mUymRg2bBixsbEMGzZMyYtcla7A3GAFBQUAHDt2rN4rJHv27HF8tS/LfPbsWRYuXEhGRgYlJSWcO3fO6Rj7ggHNqX///o4pY1cqKCigU6dOfPDBB/Ue17FjR8dzaora2loA7r77bkdtDsDjjz/O2bNn+c1vfsNbb73Fn//85yafW0RERFoXq9WqKzDSaEpgbrDq6rolazds2MCGDRsaHGdPUmpqaoiKimLXrl0MHDjQsaeMp6cnpaWlrFixgkuXLjV73N26dau3vbq6GovFQkpKSoPH/jThaozbb78dgIceeshlU8qYmBh+85vfOKaZSdN5njqA6cwhrLf3xOIb5u5wREREGrRx40bmJb/C4fIKR1uPO4N4JXmeamCkXkpgbjAfHx8A3n77baZPn37N8ZmZmezatYtnnnmG999/36nv008/ZcWKFU16fA+PulmB9S1DfGWdyU81tLO9j48PhmFw8uTJJsVxLX369OE///M/6dKli0ufve3CBe0c31QeF0/h+9cX6FCx09F2KWgwp8YspdbL9ypHioiI3HwbN25k2rRpPNTLk1VP30Z4gIniSit/zDvJtGnTWKZCfqmHamBuMPvqYvn5+Y0aX1JSAsDDDz/s0peXl1fvMR4eHg0uX+zrW/dLanl5uUtfUVFRo2K6UkREBFVVVezfv7/Jx17N6NGjAfjv//5vlz57m31VN2mYcfm80833by/S4dR+eCQVfrcPHkmlw6n9+P5tpstYERERd7JarcxLfoWHenmSkeBFZLAn3u0NIoPr7j/Uy5NXU5Kue8sGuXUpgbnBhgwZQkREBGlpaY6lgq9UW1tLbm6u477ZbAZg+/btTuNyc3NdrsjYde3alSNHjtTbN2jQIAA++ugjR50J1CVUK1eubNqTAZ5//nkApkyZQlVVlUv/sWPH+O6775p83vj4ePz9/Vm5ciW7d+92tNfU1JCUlATAo48+2uTztjVBy+9xunU4WggxS6DvBOjcre7rQ2/S4WiBy1gRERF3Kiws5HB5BbOHt8PjJzNBPAyD3/+qHYeOHKWwsNBNEUpLpSlkzSAtLY1Ro0aRkJDAkiVLuOeee/Dy8uLQoUPk5+dz4sQJLl68CNTVe4SEhPDGG29QXFxMeHg4e/fuZf369cTGxrJmzRqX848ePZpVq1YRHx/PwIEDMZlMjBs3jn79+hEZGcnQoUPZunUrQ4cOZcSIEZSVlZGVlUVMTAzr1q1r0nMZO3Ysc+fO5dVXXyUsLIyxY8diNpupqqriwIED5OXlMX/+fO66664mndfHx4f333+f+Ph4IiMjiY+Px9fXl7/97W/8/e9/Jzo62mV5ammknsOc75vvdU8cIiIiV2FfkTQ8oP5ifXu7fZyInRKYZhAaGkpRURGLFy8mIyODDz/8EJPJRFBQECNGjCA+Pt4x1tvbm61btzJr1iy2bdtGTk4Offv2ZeXKlXTr1q3eBGbp0qUAbN26lXXr1lFbW0tgYCD9+vXDMAyysrKYOXMmGzZsYPfu3fTv35+srCyOHj3a5AQGYN68eYwYMYK33nqLLVu2cPr0afz8/AgNDSU5OZnHH3/8ul6n2NhYcnNzmT9/PllZWZw/f55evXrx+uuvM3PmTK0+0ggViV87/u15+nvuWPcIHNpRd+XFruxLAE5MWI2ly89udogiIiL1CggIAKC40kpksOuvpMWVVqdxInaGzWazuTuIlio1NZXExESWL1+uqwEtSFRUFLm5uTT1R3ffvn106NCBdu3aNVNk7ue34Wnan9qLEb2w7spL2ZfYNr5ETdc+VEXXvxS2iIjcfJcvX3ZMI7+VXe2z12q1cu/QCAZ0OklGgpfTNLJam43YTy/yX+fvYPuOAv1Rs41o7PtCNTCNkJiYiGEYJCQkuDuUNstisWAYBoZhONUQibNT9y2kpmsfSE+ERb0hPZGarn04NXqhu0MTERFxYjKZeCV5Huv3W4j99CL5hy2cvWQj/3Dd/fX7LcxNSlHyIi40hewqBgwY4CgoBxwbT8rN5+Hh4fS9kPrVevlSFf2B9oEREZFWITo6mmXLljEv+RWGffjjPjA9g7uzbFmKllCWemkKmdwQpaWlpKamXnNcly5dmDFjRrPHU5+2MIVMRERaB00hc2a1WiksLKSyspKAgAAiIiJ05aUNauz7Qldg5IYoLS0lJSXlmuPMZrPbEhgRERFpmUwmE8OGDbv2QBGUwMgNEhUV1eSiehERERGRplIRv4iIiIiItBpKYEREREREpNVQAiMiIiIiIq2GEhgREREREWk1VMQvbYrFYnF3CCIiIm3q86gtPVf5xzT2Z0UJjLQZ7du3p6amBqvV6u5QRERE2gR99kpz0EaW0mZYrVZqa2vdHYaIiAhAm9hYWZ+90lSNeV8ogRERERERkVZDRfwiIiIiItJqKIEREREREZFWQwmMiIiIiIi0GkpgRERERESk1VACIyIiIiIirYb2gRERERERt7JareTl5VFRUUFQUBDDhw/HZDK5OyxpoZTAiNyC9h8/S2nVeUL8bqNXt87uDkdERKRBa9euZcaLMzl8qMzR1qOnmSVvLiYuLs6NkUlLpX1gRG4h1edqeD6tiO0HTjrafhXmz1uPDaRrp/ZujExERMTV2rVriY+Pp+PPB+MT+Sjt7jBz+UQZPxSs4kLJTtLT05XEiAslMCK3kCf+XMh3FT8wb3w4g0N92XnwFK9kFvPL7j58/HSEu8MTERFxsFqthP7s51S174Z/3BwM48fSbJutlpNr5+N3uZKDJQc0nUycqIj/KlJTUzEMw3FLSEhw6i8sLGT06NH4+flhGAZRUVHuCbQNsFgsTt8LwzDcHVKLs//4WbYfOMm88eGMuzuIgM5ejLs7iJTxfcnbf5L9x8+6O0QRERGHvLw8Dh8qwyfyUafkBcAwPPCJfITDZaXk5eW5KUJpqVQD0wjjx49nwIABhIeHO9rOnDlDTEwMNTU1PPnkk/j5+RESEnJT4jEMg5EjR5KTk3NTHq85TJ48mRUrVlx1zLx585g7dy4AHh4eJCUlAXWJZVlZ2dUObZNKq84DMDjU16l9SGhXR7/qYUREpKWoqKgAoN0d5nr72/mbncaJ2CmBaYTY2FgmT57s1LZz505OnDjBggULePnll90TWCsWGxvbYMK3cOFCzp07xwMPPOBo8/DwIDk5GYCcnBwlMPUI8bsNgJ0HTzHu7iBH+1cHq536RUREWoKgoLrPqssnyuhw5y9c+i+fLHMaJ2KnBOY6HT16FIDAwEA3R9I6xcbGEhsb69L+9ddfk5KSQr9+/RgyZMjND6wV69WtM78K8+eVzGJs2BgS2pWvDlaTlPl3hvfy19UXERFpUYYPH06PnmaqClbVWwPzQ8FqephDGD58uBujlJZINTDXwTAMJk2aBEBiYqKjJuPKKV2VlZW8+OKLhIWF0aFDB/z9/Zk4cSLFxcUu58vOzmbKlCn06dMHb29vvL29GTRoEMuWLXMal5OT46j9yM3NdaoHSU1NBSA5OdklFjt7TY99LEBpaSmGYTB58mT27NlDXFwc/v7+GIZBaWmpY1xmZib33Xcfvr6+eHl5ER4ezsKFC7Fardf3Ijbgz3/+MwBPP/30DT1vW/HWYwP5ZXcfpn9SxJA/bGH6J0X8srsPSxMGujs0ERERJyaTiSVvLuZCyU5Orp3PpfLvqL10nkvl33Fy7XwulOxkyeJFKuAXF7oCcx2SkpL45ptvyMzMdNTHAI4pUSUlJURFRVFeXs79999PbGwslZWVrFmzhs2bN7NlyxYiIn5cEer111/nwIEDREZGMmHCBE6fPs2mTZt49tln2bt3L4sWLXKcPykpiZSUFMxms9O0NnsM18v++H379mXSpElUV1fTvn3dsruzZ89mwYIFBAcHM3HiRHx8fNi2bRuzZs2isLCQ1atX/0OPbXfhwgXS0tLo0KEDTz755A05Z1vTtVN7Pn46QvvAiIhIqxAXF0d6enrdPjB/meVo72EOYYmWUJaG2KRBy5cvtwG25cuXN6lv2LBhNk9PT9sXX3zh1L53715b586dbf369XNq//77713OcfnyZduYMWNsJpPJVlZW5tQH2EaOHFlvzElJSTbAlp2d3aiYDx48aANsgG3u3Lkux3zxxRc2wPbggw/azp0752ivra21PffcczbAlp6eXm8sTfXRRx/ZAFtCQsJVx40cOdKmH10REZFbh8VisWVnZ9s++eQTW3Z2ts1isbg7JGnBNIXsBisqKmLHjh1MmjSJMWPGOPX17t2bqVOnsnv3bqepZKGhoS7n8fT05LnnnsNqtZKdnd3scQcGBjJnzhyX9nfeeQeA9957j9tu+7EI3DAMXnvtNQzDIC0t7YbE8MEHHwDwzDPP3JDziYiISOtgMpmIioriscceIyoqStPG5Ko0hewGKygoAODYsWOOVbOutGfPHsdX+7LMZ8+eZeHChWRkZFBSUsK5c+ecjrEvGNCc+vfv75gydqWCggI6derkSC5+qmPHjo7n9I84cOAA27ZtIzQ0lNGjR//D5xMREZHWw2q1kpeXR0VFBUFBQQwfPlxJjDRICcwNVl1dt2Tthg0b2LBhQ4Pj7ElKTU0NUVFR7Nq1i4EDBzr2lPH09KS0tJQVK1Zw6dKlZo+7W7du9bZXV1djsVhISUlp8NifJlzX44MPPsBmszFlyhRtUnkjVO6B6u+h688gwHVpShERkZZi7dq1/O7FFyg9dMTRFtIzmEVvLlUNjNRLCcwN5uPjA8Dbb7/N9OnTrzk+MzOTXbt28cwzz/D+++879X366afX3Ozxpzw86mYFWiwWl74zZ840eFxDSYOPjw+GYXDy5MkmxdEUVquVFStWYDKZSExMbLbHaRNO7IP1M6Dsyx/bzPfCox9DJz+3hSUiIlKftWvXEh8fz0O9PEl7+jbCA0wUV1r54/bjxMfHk65CfqmHamBuMPvqYvn5+Y0aX1JSAsDDDz/s0peXl1fvMR4eHg0uX+zrW7cLe3l5uUtfUVFRo2K6UkREBFVVVezfv7/JxzbWxo0bqaioYOzYsdx5553N9ji3nJpzrrd/j4Djf4dHUuF3++q+Hv87pE+uf7yIiIibWK1WfvfiCzzUy5OMBC8igz3xbm8QGexJxq+9eKi3Jy/NnHHDt2yQ1k8JzA02ZMgQIiIiSEtL47PPPnPpr62tJTc313HfbDYDsH37dqdxubm5Lldk7Lp27cqRI0fq7Rs0aBAAH330EbW1tY72/Px8Vq5c2bQnAzz//PMATJkyhaqqKpf+Y8eO8d133zX5vFey19do75cm+mN315utFmKWQN8J0Llb3deH3oSD2+ofLyIi4iZ5eXmUHjrC7OHt8PjJTBAPw+D397bjYNnhBv+gK22XppA1g7S0NEaNGkVCQgJLlizhnnvuwcvLi0OHDpGfn8+JEye4ePEiADExMYSEhPDGG29QXFxMeHg4e/fuZf369cTGxrJmzRqX848ePZpVq1YRHx/PwIEDMZlMjBs3jn79+hEZGcnQoUPZunUrQ4cOZcSIEZSVlZGVlUVMTAzr1q1r0nMZO3Ysc+fO5dVXXyUsLIyxY8diNpupqqriwIED5OXlMX/+fO66667req2OHz/Ohg0b6NatGzExMdd1DvmJnsOc75vvdU8cIiIiV1FRUQFAeED9xfr2dvs4ETslMM0gNDSUoqIiFi9eTEZGBh9++CEmk4mgoCBGjBhBfHy8Y6y3tzdbt25l1qxZbNu2jZycHPr27cvKlSvp1q1bvQnM0qVLAdi6dSvr1q2jtraWwMBA+vXrh2EYZGVlMXPmTDZs2MDu3bvp378/WVlZHD16tMkJDMC8efMYMWIEb731Flu2bOH06dP4+fkRGhpKcnIyjz/++HW/VitWrMBisTBp0iQ8PfXj2CSzf7I63Yl98H4UHNpRd+XFzl4PMzUH7uh9s6ITERG5qqCgIACKK61EBrv+DlBcaXUaJ2Jn2Gw2m7uDaKlSU1NJTExk+fLlTrvei3tFRUWRm5uLfnTrsTwaTuyF6H+tu/JS9iVsnAWB/eCpDHdHJyIi4mC1Wgn7WQj9Oh4n49deTtPIam02Yj+7SPHFQPaXHNSSyuJENTCNkJiYiGEYJCQkuDuUNstisWAYBoZhONUQyU88+nFdspKeCIt6130N7AcT69/HR0RExF1MJhOL3lzK+n0WYj+7SP5hC2cv2cg/XHd//T4LCxcvUfIiLjRn5yoGDBhAUlKS475940m5+Tw8PJy+F9KATn51V1q0D4yIiLQCcXFxpKen87sXX2DYhz8uUBRq7kF6+hItoSz10hQyuSFKS0tJTU295rguXbowY8aMZo9HREREWg+r1UpeXh4VFRUEBQUxfPhwXXmRBimBkRsiJyeHUaNGXXOc2WymtLS0+QMSERERkVuSEhgREREREWk1VMQvIiIiIiKthhIYERERERFpNZTAiIiIiIhIq6EERkREREREWg0lMCIiIiIi0mpoI0tpM6xWK7W1te4OQ0REBIB27dq5O4Rmp89eaarGvC+UwEibcfjwYWpqatwdhoiICAC9e/d2dwjNTp+90lSNeV8ogZE2o6amBpPJhKenfuxFRMS9LBaLu0O4KfTZK03R2PeFfpqkTfH09GwTl+xFRERaCn32yo2mIn4REREREWk1lMCIiIiIiEiroQRGRERERERaDSUwIiIiIiLSaiiBERERERGRVkOrkImIiIiIW1mtVgoLC6msrCQgIICIiAhMJpO7w5IWSgmMyC3oYNUFjpypIfj29oT6dXR3OCIiIg3auHEjSckpHC0/4mjrfmcwKclJREdHuzEyaamUwIjcQk5fsJC0qZSdh8862gb36EzK2BC6dNTbXUREWpaNGzcybdo0Ov58MIFPzKDdHWYunyjjdMEqpk2bxrJly5TEiAvDZrPZ3B2EyM2wb98+OnTocEtvpvXCugOUVF/k1fH9GBzqy86Dp5ibuZswPy+WxIa5OzwREflfly9fxmw2uzuMZne1z16r1Urk0GGc7tgd/7g5GMaPpdk2Wy0n186ny8UKCnZ8qelkbURj3xcq4r+K1NRUDMNw3BISEpz6CwsLGT16NH5+fhiGQVRUlHsCbQMsFovT98IwDHeH1OIcrLrAzsNneXV8P8bdHURAZy/G3R3EvPHhfHXoLAerLrg7RBEREYfCwkKOlh/BJ/JRp+QFwDA88Il8hKNHDlNYWOimCKWl0pySRhg/fjwDBgwgPDzc0XbmzBliYmKoqanhySefxM/Pj5CQkJsSj2EYjBw5kpycnJvyeM3lwoULvPvuu/zlL3/h4MGD2Gw2zGYzjz76KNOnT+f22293jPXw8CApKQmoSyzLysrcFXaLdeRMDQCDQ32d2oeEdnX0qx5GRERaisrKSgDa3VH/X9zb+ZudxonYKYFphNjYWCZPnuzUtnPnTk6cOMGCBQt4+eWX3RNYK3b58mVGjRpFYWEhAwYMYNKkSRiGQXZ2NnPmzCEtLY2vvvqK2267DahLYJKTkwHIyclRAlOP4NvbA7Dz4CnG3R3kaP/qYLVTv4iISEsQEBAAwOUTZXS48xcu/ZdPljmNE7FTAnOdjh49CkBgYKCbI2md1q1bR2FhIXFxcaxZs8apb8KECWRkZJCens5TTz3lpghbn1C/jgzu0Zm5mbuxYWNIaFe+OljNK5nFDOnZWVdfRESkRYmIiKD7ncGcLlhVbw3MDwWr6R7cg4iICDdGKS2RamCug2EYTJo0CYDExERHTcaVU7oqKyt58cUXCQsLo0OHDvj7+zNx4kSKi4tdzpednc2UKVPo06cP3t7eeHt7M2jQIJYtW+Y0Licnx1H7kZub61QPkpqaCkBycrJLLHb2mh77WIDS0lIMw2Dy5Mns2bOHuLg4/P39MQyD0tJSx7jMzEzuu+8+fH198fLyIjw8nIULF2K1Wq/rNfz+++8BePDBB1367KuN6JJx06WMDSHMz4vpnxQx5A9bmP5JEWF+XiQ/EOLu0ERERJyYTCZSkpO4ULKTk2vnc6n8O2ovnedS+XecXDufCyU7SUl6RQX84kJXYK5DUlIS33zzDZmZmY76GMBRA1NSUkJUVBTl5eXcf//9xMbGUllZyZo1a9i8eTNbtmxx+mvC66+/zoEDB4iMjGTChAmcPn2aTZs28eyzz7J3714WLVrkOH9SUhIpKSmYzWanaW32GK6X/fH79u3LpEmTqK6upn37uilHs2fPZsGCBQQHBzNx4kR8fHzYtm0bs2bNorCwkNWrVzf58fr27QvApk2beOaZZ5z6Pv/8cy2KcJ26dPRkSWyY9oEREZFWITo6mmXLltXtA/OXWY727sE9WKollKUBSmCuQ3JyMqmpqWRmZtZbH/PUU09x7NgxNm/ezJgxYxztc+bMYdCgQUydOpVvv/3W0f7uu+8SGhrqdA6LxUJ0dDRLly7lhRdeoGfPnoSEhJCcnExKSorj3zfKl19+ydy5c5k3b55T+1//+lcWLFjAgw8+SHp6uqMmxWaz8dvf/pY//elPrFmzhokTJzbp8R566CFiYmJYs2YN99xzDyNHjgTqrjIdOHCAf//3f2fQoEE35sm1QaF+HZW4iIhIqxAdHc0DDzxAYWEhlZWVBAQEEBERoSsv0iBNIbvBioqK2LFjB5MmTXJKXgB69+7N1KlT2b17t9NUsp8mLwCenp4899xzWK1WsrOzmz3uwMBA5syZ49L+zjvvAPDee+85kheom0b32muvYRgGaWlpTX48wzBYt24dL730EkVFRbz55pu8+eabFBUVERsby9ixY6//yYiIiEirYjKZGDZsGLGxsQwbNkzJi1yVrsDcYAUFBQAcO3as3iske/bscXy1L8t89uxZFi5cSEZGBiUlJZw7d87pGPuCAc2pf//+jiljVyooKKBTp0588MEH9R7XsWNHx3NqigsXLpCQkEBhYSGffPIJY8aMwTAMtmzZwvPPP8/nn39OQUEBP//5z5t8bhEREWldrFarrsBIoymBucGqq+uWrN2wYQMbNmxocJw9SampqSEqKopdu3YxcOBAx54ynp6elJaWsmLFCi5dutTscXfr1q3e9urqaiwWCykpKQ0e+9OEqzEWLFhAVlYWmZmZPPzww472Rx55hM6dO/Pggw8yb948VqxY0eRzSx3PUwcwnTmE9faeWHzD3B2OiIhIvTZu3Mi85Fc4XF7haOtxZxCvJM9TDYzUSwnMDebj4wPA22+/zfTp0685PjMzk127dvHMM8/w/vvvO/V9+umnTf4F3sOjblagxWJx6Ttz5kyDxzW0s72Pjw+GYXDy5MkmxXEt9uRu1KhRLn2jRo3CMAy+/vrrG/qYbYHHhWqMi6fpsj2ZDhU7He2XggZzasxSar18r3K0iIjIzbVx40amTZvGQ708WfX0bYQHmCiutPLHvJNMmzaNZSrkl3qoBuYGs68ulp+f36jxJSUlAE5XIezy8vLqPcbDw6PB5Yt9fet+QS0vL3fpKyoqalRMV4qIiKCqqor9+/c3+dirqamp2zX+xIkTLn0nT57EZrPRoUOHG/qYtxLj8vl6b4Ef30u39Bg6nNoPj6TC7/bBI6l0OLUf37/NrPcYERERd7BarcxLfoWHenmSkeBFZLAn3u0NIoPr7j/Uy5NXU5Kue8sGuXUpgbnBhgwZQkREBGlpaXz22Wcu/bW1teTm5jrum81mALZv3+40Ljc31+WKjF3Xrl05cuRIvX32lbs++ugjamtrHe35+fmsXLmyaU8GeP755wGYMmUKVVVVLv3Hjh3ju+++a/J57733XgBSUlKc/mOqra3llVdeAeq/OiN1gpbfU+8NAFstxCyBvhOgc7e6rw+9SYejBQ0fIyIicpMVFhZyuLyC2cPb4fGTmSAehsHvf9WOQ0eOUlhY6KYIpaXSFLJmkJaWxqhRo0hISGDJkiXcc889eHl5cejQIfLz8zlx4gQXL14EICYmhpCQEN544w2Ki4sJDw9n7969rF+/ntjYWJdd6gFGjx7NqlWriI+PZ+DAgZhMJsaNG0e/fv2IjIxk6NChbN26laFDhzJixAjKysrIysoiJiaGdevWNem5jB07lrlz5/Lqq68SFhbG2LFjMZvNVFVVceDAAfLy8pg/fz533XVXk877L//yL2RlZfHRRx/x9ddfM3r0aAzDIDs7m927dxMSEsI///M/N+mccoWew5zvm+91TxwiIiINsG9YHR5Qf7G+vV0bW8tPKYFpBqGhoRQVFbF48WIyMjL48MMPMZlMBAUFMWLECOLj4x1jvb292bp1K7NmzWLbtm3k5OTQt29fVq5cSbdu3epNYJYuXQrA1q1bWbduHbW1tQQGBtKvXz8MwyArK4uZM2eyYcMGdu/eTf/+/cnKyuLo0aNNTmAA5s2bx4gRI3jrrbfYsmULp0+fxs/Pj9DQUJKTk3n88cebfM4ePXqwa9cu/vjHP/L555/z3nvvYRgGZrOZmTNnMnv2bPz8/Jp83raiIrH++iDHFZVDO+quvNiVfQnAiQmrsXT5WXOHJyIick0BAQEAFFdaiQx2/ZW0uNLqNE7EzrDZbDZ3B9FSpaamkpiYyPLly102qxT3iYqKIjc3l6b+6O7bt48OHTrQrl27ZorM/TwuVOP7txm0P/M9RvTCuisvZV9i2/gSNV37UBVd/3LYIiJyc12+fNkxjfxWdrXPXqvVyr1DIxjQ6SQZCV5O08hqbTZiP73If52/g+07CrSkchvR2PeFamAaITExEcMwSEhIcHcobZbFYsEwDAzDcKohEme1HbtyasxSarr2gfREWNQb0hOp6dqHU6MXujs8ERERB5PJxCvJ81i/30LspxfJP2zh7CUb+Yfr7q/fb2FuUoqSF3GhKWRXMWDAAJKSkhz37RtPys3n4eHh9L2QhtV6+VIV/YH2gRERkRYvOjqaZcuWMS/5FYZ9+OM+MD2Du7NsWYqWUJZ6aQqZ3BClpaWkpqZec1yXLl2YMWNGs8dTn7YwhUxERFoHTSFzZrVaKSwspLKykoCAACIiInTlpQ1q7PtCV2DkhigtLSUlJeWa48xms9sSGBEREWmZTCYTw4YNu/ZAEZTAyA0SFRXV5KJ6EREREZGmUhG/iIiIiIi0GkpgRERERESk1VACIyIiIiIirYYSGBERERERaTVUxC9tisVicXcIIiIiberzqC09V/nHNPZnRQmMtBnt27enpqYGq9Xq7lBERETaBH32SnPQRpbSZlitVmpra90dhoiICECb2FhZn73SVI15XyiBERERERGRVkNF/CIiIiIi0moogRERERERkVZDCYyIiIiIiLQaSmBERERERKTVUAIjIiIiIiKthvaBERERERG3slqt5OXlUVFRQVBQEMOHD8dkMrk7LGmhlMCI3IL2Hz9LadV5Qvxuo1e3zu4OR0REpEFr165lxoszOXyozNHWo6eZJW8uJi4uzo2RSUulfWBEbiHV52p4Pq2I7QdOOtp+FebPW48NpGun9m6MTERExNXatWuJj4+n488H4xP5KO3uMHP5RBk/FKziQslO0tPTlcSICyUwIreQx5YVsO/4WeaND2dwqC87D57ilcxiftndh4+fjnB3eCIiIg5Wq5XQn/2cqvbd8I+bg2H8WJpts9Vycu18/C5XcrDkgKaTiRMV8V9FamoqhmE4bgkJCU79hYWFjB49Gj8/PwzDICoqyj2BtgEWi8Xpe2EYhrtDanH2Hz9L/vdVzBsfzri7gwjo7MW4u4NIGd+XvP0n2X/8rLtDFBERccjLy+PwoTJ8Ih91Sl4ADMMDn8hHOFxWSl5enpsilJZKNTCNMH78eAYMGEB4eLij7cyZM8TExFBTU8OTTz6Jn58fISEhNyUewzAYOXIkOTk5N+XxmsupU6f4wx/+QEZGBocPH8bHx4eRI0eSkpJC3759ncZ6eHiQlJQE1CWWZWVl9Z2yTSutOg/A4FBfp/YhoV0d/aqHERGRlqKiogKAdneY6+1v5292GidipwSmEWJjY5k8ebJT286dOzlx4gQLFizg5Zdfdk9grVhVVRVDhw5l//79DB06lPHjx1NRUcGaNWv4/PPP2bp1KxERP0558vDwIDk5GYCcnBwlMPUI8bsNgJ0HTzHu7iBH+1cHq536RUREWoKgoLrPqssnyuhw5y9c+i+fLHMaJ2KnBOY6HT16FIDAwEA3R9I6JSUlsX//fmbOnMmiRYsc7fn5+QwfPpwpU6awe/duPDw0y7GxenXrzK/C/HklsxgbNoaEduWrg9UkZf6d4b38dfVFRERalOHDh9Ojp5mqglX11sD8ULCaHuYQhg8f7sYopSXSb4fXwTAMJk2aBEBiYqKjJuPKKV2VlZW8+OKLhIWF0aFDB/z9/Zk4cSLFxcUu58vOzmbKlCn06dMHb29vvL29GTRoEMuWLXMal5OT46j9yM3NdaoHSU1NBSA5OdklFjt7TY99LEBpaSmGYTB58mT27NlDXFwc/v7+GIZBaWmpY1xmZib33Xcfvr6+eHl5ER4ezsKFC7Fardf1GmZkZODh4UFKSopT+9ChQ4mJieG///u/yc3Nva5zt2VvPTaQX3b3YfonRQz5wxamf1LEL7v7sDRhoLtDExERcWIymVjy5mIulOzk5Nr5XCr/jtpL57lU/h0n187nQslOlixepAJ+caErMNchKSmJb775hszMTEd9DOCogSkpKSEqKory8nLuv/9+YmNjqaysZM2aNWzevJktW7Y4TY96/fXXOXDgAJGRkUyYMIHTp0+zadMmnn32Wfbu3eu4QhESEkJSUhIpKSmYzWanaW32GK6X/fH79u3LpEmTqK6upn37umV3Z8+ezYIFCwgODmbixIn4+Piwbds2Zs2aRWFhIatXr27y4x0/fhx/f3+8vb1d+kJDQwHYunUro0aN+oeeV1vTtVN7Pn46QvvAiIhIqxAXF0d6enrdPjB/meVo72EOYYmWUJaG2KRBy5cvtwG25cuXN6lv2LBhNk9PT9sXX3zh1L53715b586dbf369XNq//77713OcfnyZduYMWNsJpPJVlZW5tQH2EaOHFlvzElJSTbAlp2d3aiYDx48aANsgG3u3Lkux3zxxRc2wPbggw/azp0752ivra21PffcczbAlp6eXm8sVxMUFGTz8PCwnT171qUvNjbWBtgeffTReo8dOXKkTT+6IiIitw6LxWLLzs62ffLJJ7bs7GybxWJxd0jSgmkK2Q1WVFTEjh07mDRpEmPGjHHq6927N1OnTmX37t1OU8nsVxyu5OnpyXPPPYfVaiU7O7vZ4w4MDGTOnDku7e+88w4A7733Hrfd9mMRuGEYvPbaaxiGQVpaWpMf78EHH6S2ttZlCtlXX33F+vXrATh9+nSTzysiIiKtj8lkIioqiscee4yoqChNG5Or0hSyG6ygoACAY8eOOVbNutKePXscX+3LMp89e5aFCxeSkZFBSUkJ586dczrGvmBAc+rfv79jytiVCgoK6NSpEx988EG9x3Xs2NHxnJoiJSWFzz//nIULF5Kfn09kZCQVFRWkp6fzy1/+km+//Vb/eYmIiLQRVquVvLw8KioqCAoKYvjw4fo9QBqkBOYGq66uW7J2w4YNbNiwocFx9iSlpqaGqKgodu3axcCBAx17ynh6elJaWsqKFSu4dOlSs8fdrVu3eturq6uxWCwuV0qu9NOEqzGCg4PZuXMnSUlJfP7553z11Vf06NGDefPmERISQkJCAnfccUeTz9smVe6B6u+h688gwHUZShERkZZs7dq1/O7FFyg9dMTRFtIzmEVvLlUNjNRLCcwN5uPjA8Dbb7/N9OnTrzk+MzOTXbt28cwzz/D+++879X366aesWLGiSY9vX3bYYrG49J05c6bB4xra2d7HxwfDMDh58mST4miMO++8kz//+c8u7fYrV4MGDbrhj3lLObEP1s+Asi9/bDPfC49+DJ383BaWiIhIY61du5b4+Hge6uVJ2tO3ER5gorjSyh+3Hyc+Pp50FfJLPVQDc4PZVxfLz89v1PiSkhIAHn74YZe+vLy8eo/x8PBocPliX9+6XdjLy8td+oqKihoV05UiIiKoqqpi//79TT72elitVj799FM8PT2ZOHHiTXnMVqHmnOvt3yPg+N/hkVT43b66r8f/DumTnceJiIi0QFarld+9+AIP9fIkI8GLyGBPvNsbRAZ7kvFrLx7q7clLM2dc95YNcutSAnODDRkyhIiICNLS0vjss89c+mtra532NzGbzQBs377daVxubq7LFRm7rl27cuTIkXr77FctPvroI2prax3t+fn5rFy5smlPBnj++ecBmDJlClVVVS79x44d47vvvmvyeS9fvsyFCxec2mpra3nppZfYu3cv/+///T+6d+/e5PPesv7Y3fVmq4WYJdB3AnTuVvf1oTfh4DbncSIiIi1QXl4epYeOMHt4Ozx+MhPEwzD4/b3tOFh2uME/6ErbpSlkzSAtLY1Ro0aRkJDAkiVLuOeee/Dy8uLQoUPk5+dz4sQJLl68CEBMTAwhISG88cYbFBcXEx4ezt69e1m/fj2xsbGsWbPG5fyjR49m1apVxMfHM3DgQEwmE+PGjaNfv35ERkYydOhQtm7dytChQxkxYgRlZWVkZWURExPDunXrmvRcxo4dy9y5c3n11VcJCwtj7NixmM1mqqqqOHDgAHl5ecyfP5+77rqrSec9fvw4ffv25f777yc0NJSamho2b97Mnj17GDduHAsWLGjS+dqsnsOc75vvdU8cIiIiTVRRUQFAeED9xfr2dvs4ETslMM0gNDSUoqIiFi9eTEZGBh9++CEmk4mgoCBGjBhBfHy8Y6y3tzdbt25l1qxZbNu2jZycHPr27cvKlSvp1q1bvQnM0qVLgbqNHtetW0dtbS2BgYH069cPwzDIyspi5syZbNiwgd27d9O/f3+ysrI4evRokxMYgHnz5jFixAjeeusttmzZwunTp/Hz8yM0NJTk5GQef/zxJp/z9ttvZ/z48Xz55ZesX7+edu3aER4ezvvvv8+UKVMctTzyv2b/ZCW6E/vg/Sg4tKPuyoudvR5mag7c0ftmRSciItJkQUFBABRXWokMdv2VtLjS6jROxM6w2Ww2dwfRUqWmppKYmMjy5cuddr0X94qKiiI3N5c2/6O7PBpO7IXof6278lL2JWycBYH94KkMd0cnIiJyVVarlbCfhdCv43Eyfu3lNI2s1mYj9rOLFF8MZH/JQS2pLE70Z+5GSExMxDAMEhIS3B1Km2WxWDAMA8MwnGqI2rRHP65LVtITYVHvuq+B/WBi/Xv2iIiItCQmk4lFby5l/T4LsZ9dJP+whbOXbOQfrru/fp+FhYuXKHkRF5pCdhUDBgwgKSnJcd++8aTcfB4eHk7fC6FuqeSnMrQPjIiItFpxcXGkp6fzuxdfYNiHPy5QFGruQXr6Ei2hLPXSFDK5IUpLS0lNTb3muC5dujBjxoxmj0dERERaD6vVSl5eHhUVFQQFBTF8+HBdeZEGKYGRGyInJ4dRo0Zdc5zZbKa0tLT5AxIRERGRW5ISGBERERERaTVUxC8iIiIiIq2GEhgREREREWk1lMCIiIiIiEiroQRGRERERERaDe0DI22G1WqltrbW3WGIiIgA0K5dO3eH0Oz02StN1Zj3hRIYaTMOHz5MTU2Nu8MQEREBoHfv3u4Oodnps1eaqjHvCyUw0mbU1NRgMpnw9NSPvYiIuJfFYnF3CDeFPnulKRr7vtBPk7Qpnp6ebeKSvYiISEuhz1650VTELyIiIiIirYYSGBERERERaTWUwIiIiIiISKuhBEZERERERFoNJTAiIiIiItJqKIEREREREZFWQ8soi4iIiIhbWa1WCgsLqaysJCAggIiICEwmk7vDkhZKCYzILehg1QWOnKkh+Pb2hPp1dHc4IiIiDdq4cSNJySkcLT/iaOt+ZzApyUlER0e7MTJpqZTAiNxCTl+wkLSplJ2HzzraBvfoTMrYELp01NtdRERalo0bNzJt2jQ6/nwwgU/MoN0dZi6fKON0wSqmTZvGsmXLlMSIC8Nms9ncHYTIzbBv3z46dOhwy+4GfOGylX/6j+85eOoSr47vx+BQX3YePMXczN2E+XmxJDbM3SGKiMj/unz5Mmaz2d1hNLurffZarVYihw7jdMfu+MfNwTB+LM222Wo5uXY+XS5WULDjS00nayMa+75oU0X8qampGIbhuCUkJDj1FxYWMnr0aPz8/DAMg6ioKPcEKvV64oknnL5/qamp7g6pRbnv3W/5+sj/8Or4foy7O4iAzl6MuzuIeePD+erQWQ5WXXB3iCIiIg6FhYUcLT+CT+SjTskLgGF44BP5CEePHKawsNBNEUpL1SbnlIwfP54BAwYQHh7uaDtz5gwxMTHU1NTw5JNP4ufnR0hIyE2JxzAMRo4cSU5Ozk15vOZw/vx53n33Xb7++mt27drFvn37sNlsHDx48Kqv4/79+/mXf/kXsrOz+Z//+R969erFtGnT+O1vf4uHh/N/ZnFxcYSFhfHNN9+QmZnZzM+o9Roc6ut0f0hoVwCOnKlRPYyIiLQYlZWVALS7o/6/uLfzNzuNE7FrkwlMbGwskydPdmrbuXMnJ06cYMGCBbz88svuCawVq6ys5KWXXgLAbDbj6+tLdXX1VY/57//+b4YNG8b58+d59NFHufPOO/n888/5f//v//Htt9+ybNkyp/FxcXHExcWRmpqqBKYeH/y6N09/to+dB08x7u4gR/tXB+u+D8G3t3dXaCIiIi4CAgIAuHyijA53/sKl//LJMqdxInZtagrZ1Rw9ehSAwMBAN0fSOvn7+/PFF19QVVVFaWkpgwcPvuYxv/nNbzhz5gwZGRn85S9/4fXXX+frr7/mvvvu4/333yc7O/smRH7ruKtbJwb36MzczN2s//YolWcvsv7bo7ySWcyQnp119UVERFqUiIgIut8ZzA8Fq7DZap36bLZafihYTffgHkRERLgpQmmplMBQN4Vr0qRJACQmJjpqLK6c0lVZWcmLL75IWFgYHTp0wN/fn4kTJ1JcXOxyvuzsbKZMmUKfPn3w9vbG29ubQYMGuVxRyMnJwTAMAHJzc+ut70hOTnaJxc5e03NlLUhpaSmGYTB58mT27NlDXFwc/v7+GIZBaWmpY1xmZib33Xcfvr6+eHl5ER4ezsKFC7Fardf1Gnp7ezNmzBi6du3aqPH79u1j27ZtjBo1yml1kXbt2vGHP/wBgPfff/+6YmnLUsaGEObnxfRPihjyhy1M/6SIMD8vkh8IcXdoIiIiTkwmEynJSVwo2cnJtfO5VP4dtZfOc6n8O06unc+Fkp2kJL2iAn5x0SankP1UUlKSo67CXh8DOGo3SkpKiIqKory8nPvvv5/Y2FgqKytZs2YNmzdvZsuWLU5/HXj99dc5cOAAkZGRTJgwgdOnT7Np0yaeffZZ9u7dy6JFixznT0pKIiUlBbPZ7DStzR7D9bI/ft++fZk0aRLV1dW0b183hWj27NksWLCA4OBgJk6ciI+PD9u2bWPWrFkUFhayevXqf+ixG8OekN1///0ufUOGDKFLly7k5uY2exy3mi4dPVkSG6Z9YEREpFWIjo5m2bJldfvA/GWWo717cA+WagllaYASGOquctjrKuqrj3nqqac4duwYmzdvZsyYMY72OXPmMGjQIKZOncq3337raH/33XcJDQ11OofFYiE6OpqlS5fywgsv0LNnT0JCQkhOTiYlJcXx7xvlyy+/ZO7cucybN8+p/a9//SsLFizgwQcfJD09ndtuuw0Am83Gb3/7W/70pz+xZs0aJk6ceMNiqc/+/fsB6NWrl0ufYRiEhYXxn//5n5w/f94RozReqF9HJS4iItIqREdH88ADD1BYWEhlZSUBAQFEREToyos0SFPIrqGoqIgdO3YwadIkp+QFoHfv3kydOpXdu3c7TSX7afIC4OnpyXPPPYfVar0ptR2BgYHMmTPHpf2dd94B4L333nNKDAzD4LXXXsMwDNLS0po9vjNnzgBw++2319vv4+PjNE5ERERuXSaTiWHDhhEbG8uwYcOUvMhV6QrMNRQUFABw7Nixeq+Q7Nmzx/HVvizz2bNnWbhwIRkZGZSUlHDu3DmnY+wLBjSn/v37O6aMXamgoIBOnTrxwQcf1Htcx44dHc9JRERE5GawWq26AiONpgTmGuxLAW/YsIENGzY0OM6epNTU1BAVFcWuXbsYOHCgY08ZT09PSktLWbFiBZcuXWr2uLt161Zve3V1NRaLhZSUlAaP/WnC1RzsV14ausLyww8/AD9eiZGGeZ46gOnMIay398TiG+bucERERJpk48aNzEt+hcPlFY62HncG8UryPNXASL2UwFyD/Rfot99+m+nTp19zfGZmJrt27eKZZ55xWUXr008/ZcWKFU16fPtmjhaLxaXvatOr7Kub/ZSPjw+GYXDy5MkmxXGj2Wtf7LUwV7LZbBw4cIDu3bvTqVOnmx1aq2E69T1dtifToWKno+1S0GBOjVlKrZfvVY4UERFpGTZu3Mi0adN4qJcnq56+jfAAE8WVVv6Yd5Jp06axTIX8Ug/VwFyDfXWx/Pz8Ro0vKSkB4OGHH3bpy8vLq/cYDw+PBpcv9vWt+0W0vLzcpa+oqKhRMV0pIiKCqqqqehOHmykqKgqAL774wqXvq6++4vTp04wcOfImR9VyGZfPu9y6pcfQ4dR+eCQVfrcPHkmlw6n9+P5tpstYERGRlsZqtTIv+RUe6uVJRoIXkcGeeLc3iAyuu/9QL09eTUm67i0e5NalBOYahgwZQkREBGlpaXz22Wcu/bW1tU7L/ZrNZgC2b9/uNC43N7fBfU26du3KkSNH6u0bNGgQAB999BG1tT9u8pSfn8/KlSub9mSA559/HoApU6ZQVVXl0n/s2DG+++67Jp+3qXr37s2IESPIzs5m48aNjvbLly87Fh+YOnVqs8fRWgQtv8flhq0WYpZA3wnQuVvd14fepMPRAtexIiIiLUxhYSGHyyuYPbwdHj+ZOeJhGPz+V+04dOQohYWFbopQWipNIWuEtLQ0Ro0aRUJCAkuWLOGee+7By8uLQ4cOkZ+fz4kTJ7h48SIAMTExhISE8MYbb1BcXEx4eDh79+5l/fr1xMbGsmbNGpfzjx49mlWrVhEfH8/AgQMxmUyMGzeOfv36ERkZydChQ9m6dStDhw5lxIgRlJWVkZWVRUxMDOvWrWvScxk7dixz587l1VdfJSwsjLFjx2I2m6mqquLAgQPk5eUxf/587rrrria/Ti+99JJjatru3bsdbd7e3gC8/PLL/OIXv3CMf/fddxk2bBgTJkzg0UcfpXv37mzatIlvv/2WZ555hlGjRjU5hjan5zDn++Z73ROHiIhIE1VWVgIQHlB/sb693T5OxE4JTCOEhoZSVFTE4sWLycjI4MMPP8RkMhEUFMSIESOIj493jPX29mbr1q3MmjWLbdu2kZOTQ9++fVm5ciXdunWrN4FZunQpAFu3bmXdunXU1tYSGBhIv379MAyDrKwsZs6cyYYNG9i9ezf9+/cnKyuLo0ePNjmBAZg3bx4jRozgrbfeYsuWLZw+fRo/Pz9CQ0NJTk7m8ccfv67XKT09nbKyMqe2K5/v5MmTnRKYX/7yl3z11Vf8y7/8C59//jn/8z//Q1hYGG+99Rb/9//+3+uK4VZVkfi1033P099zx7pH4NCOuisvdmVfAnBiwmosXX52M0MUERFpkoCAAACKK61EBrv+SlpcaXUaJ2Jn2Gw2m7uDuFlSU1NJTExk+fLlLptVSutxvd/Hffv20aFDB9q1a9d8wd1Efv/xFO3PfI8RvbDuykvZl9g2vkRN1z5URde/TLaIiLQMly9fdkw7v5Vd7bPXarVy79AIBnQ6SUaCl9M0slqbjdhPL/Jf5+9g+44CLancRjT2fdEma2ASExMxDIOEhAR3hyJN8MQTT2AYBomJie4OpUU4NWYpNV37QHoiLOoN6YnUdO3DqdEL3R2aiIjINZlMJl5Jnsf6/RZiP71I/mELZy/ZyD9cd3/9fgtzk1KUvIiLNjWFbMCAASQlJTnu2zeelNYhLi6OsLAf9zkZMGCA+4JpAWq9fKmK/kD7wIiISKsVHR3NsmXLmJf8CsM+/HEfmJ7B3Vm2LEVLKEu92tQUMmm80tJSUlNTrzmuS5cuzJgxo9njuRFutSlkIiLSemkKmTOr1UphYSGVlZUEBAQQERGhKy9tUGPfF23qCow0XmlpKSkpKdccZzabW00CIyIiIi2TyWRi2LBh1x4oghIYaUBUVBS6OCciIiIiLU2bLOIXEREREZHWSQmMiIiIiIi0GkpgRERERESk1VACIyIiIiIirYaK+KVNsVgs7g5BRESkTX0etaXnKv+Yxv6sKIGRNqN9+/bU1NRgtVrdHYqIiEiboM9eaQ7ayFLaDKvVSm1trbvDEBERAWgTGyvrs1eaqjHvCyUwIiIiIiLSaqiIX0REREREWg0lMCIiIiIi0moogRERERERkVZDCYyIiIiIiLQaSmBERERERKTV0D4wIiIiIuJWVquVvLw8KioqCAoKYvjw4ZhMJneHJS2UEhiRW9D+42cprTpPiN9t9OrW2d3hiIiINGjt2rXMeHEmhw+VOdp69DSz5M3FxMXFuTEyaam0D4zILaT6XA3PpxWx/cBJR9uvwvx567GBdO3U3o2RiYiIuFq7di3x8fF0/PlgfCIfpd0dZi6fKOOHglVcKNlJenq6khhxoQRG5Bby2LIC9h0/y7zx4QwO9WXnwVO8klnML7v78PHTEe4OT0RExMFqtRL6s59T1b4b/nFzMIwfS7NttlpOrp2P3+VKDpYc0HQycdKmivhTU1MxDMNxS0hIcOovLCxk9OjR+Pn5YRgGUVFR7glU6vXEE084ff9SU1PdHVKLsv/4WfK/r2Le+HDG3R1EQGcvxt0dRMr4vuTtP8n+42fdHaKIiIhDXl4ehw+V4RP5qFPyAmAYHvhEPsLhslLy8vLcFKG0VG2yBmb8+PEMGDCA8PBwR9uZM2eIiYmhpqaGJ598Ej8/P0JCQm5KPIZhMHLkSHJycm7K4zWH8+fP8+677/L111+za9cu9u3bh81m4+DBgw2+jv/xH//BF198wa5du/jmm284f/48SUlJJCcn1zs+Li6OsLAwvvnmGzIzM5vvybRSpVXnARgc6uvUPiS0q6Nf9TAiItJSVFRUANDuDnO9/e38zU7jROzaZAITGxvL5MmTndp27tzJiRMnWLBgAS+//LJ7AmvFKisreemllwAwm834+vpSXV191WMWLVpEbm4uPj4+dO/enQMHDlx1fFxcHHFxcaSmpiqBqUeI320A7Dx4inF3BznavzpY7dQvIiLSEgQF1X1WXT5RRoc7f+HSf/lkmdM4Ebs2NYXsao4ePQpAYGCgmyNpnfz9/fniiy+oqqqitLSUwYMHX/OYV199lX379nH69GleffXVmxDlra1Xt878KsyfVzKLWf/tUSrPXmT9t0dJyvw7w3v56+qLiIi0KMOHD6dHTzM/FKzCZqt16rPZavmhYDU9zCEMHz7cTRFKS6UEhropXJMmTQIgMTHRUWNx5ZSuyspKXnzxRcLCwujQoQP+/v5MnDiR4uJil/NlZ2czZcoU+vTpg7e3N97e3gwaNIhly5Y5jcvJycEwDAByc3Prre9ITk52icXOXtNzZS1IaWkphmEwefJk9uzZQ1xcHP7+/hiGQWlpqWNcZmYm9913H76+vnh5eREeHs7ChQuxWq3X9Rp6e3szZswYunbt2uhjhg8fTq9evRyvgfzj3npsIL/s7sP0T4oY8octTP+kiF9292FpwkB3hyYiIuLEZDKx5M3FXCjZycm187lU/h21l85zqfw7Tq6dz4WSnSxZvEgF/OKiTU4h+6mkpCRHXYW9PgZw1G6UlJQQFRVFeXk5999/P7GxsVRWVrJmzRo2b97Mli1biIj4cYWn119/nQMHDhAZGcmECRM4ffo0mzZt4tlnn2Xv3r0sWrTIcf6kpCRSUlIwm81O09rsMVwv++P37duXSZMmUV1dTfv2dcvozp49mwULFhAcHMzEiRPx8fFh27ZtzJo1i8LCQlavXv0PPba4T9dO7fn46QjtAyMiIq1CXFwc6enpdfvA/GWWo72HOYQlWkJZGqAEhrqrHPa6ivrqY5566imOHTvG5s2bGTNmjKN9zpw5DBo0iKlTp/Ltt9862t99911CQ0OdzmGxWIiOjmbp0qW88MIL9OzZk5CQEJKTk0lJSXH8+0b58ssvmTt3LvPmzXNq/+tf/8qCBQt48MEHSU9P57bb6uoibDYbv/3tb/nTn/7EmjVrmDhx4g2LRW6+Xt06K3EREZFWIS4ujvHjx5OXl0dFRQVBQUEMHz5cV16kQZpCdg1FRUXs2LGDSZMmOSUvAL1792bq1Kns3r3baSrZT5MXAE9PT5577jmsVivZ2dnNHndgYCBz5sxxaX/nnXcAeO+99xzJC9RNo3vttdcwDIO0tLRmj09ERETEzmQyERUVxWOPPUZUVJSSF7kqXYG5hoKCAgCOHTtW7xWSPXv2OL7al2U+e/YsCxcuJCMjg5KSEs6dO+d0jH3BgObUv39/x5SxKxUUFNCpUyc++OCDeo/r2LGj4zmJiIiI3AxWq1VXYKTRlMBcg30p4A0bNrBhw4YGx9mTlJqaGqKioti1axcDBw507Cnj6elJaWkpK1as4NKlS80ed7du3eptr66uxmKxkJKS0uCxP024pIWr3APV30PXn0GA6zKUIiIiLdnatWv53YsvUHroiKMtpGcwi95cqhoYqZcSmGvw8fEB4O2332b69OnXHJ+ZmcmuXbt45plneP/99536Pv30U1asWNGkx/fwqJvlZ7FYXPrOnDnT4HENrezl4+ODYRicPHmySXFIC3RiH6yfAWVf/thmvhce/Rg6+bktLBERkcZau3Yt8fHxPNTLk7SnbyM8wERxpZU/bj9OfHw86Srkl3qoBuYa7KuL5efnN2p8SUkJAA8//LBLX15eXr3HeHh4NLh8sa9v3a7q5eXlLn1FRUWNiulKERERVFVVsX///iYfK25Uc8719u8RcPzv8Egq/G5f3dfjf4f0ya5jRUREWhir1crvXnyBh3p5kpHgRWSwJ97tDSKDPcn4tRcP9fbkpZkzrnuLB7l1KYG5hiFDhhAREUFaWhqfffaZS39tbS25ubmO+2azGYDt27c7jcvNzXW5ImPXtWtXjhw5Um/foEGDAPjoo4+orf1xk6f8/HxWrlzZtCcDPP/88wBMmTKFqqoql/5jx47x3XffNfm80sz+2N31ZquFmCXQdwJ07lb39aE34eA217EiIiItTF5eHqWHjjB7eDs8fjJzxMMw+P297ThYdrjBPwBL26UpZI2QlpbGqFGjSEhIYMmSJdxzzz14eXlx6NAh8vPzOXHiBBcvXgQgJiaGkJAQ3njjDYqLiwkPD2fv3r2sX7+e2NhY1qxZ43L+0aNHs2rVKuLj4xk4cCAmk4lx48bRr18/IiMjGTp0KFu3bmXo0KGMGDGCsrIysrKyiImJYd26dU16LmPHjmXu3Lm8+uqrhIWFMXbsWMxmM1VVVRw4cIC8vDzmz5/PXXfd1eTX6aWXXnJMTdu9e7ejzdvbG4CXX36ZX/zixxqNjIwMMjIyADh48KCjzb7h5q9+9SueeeaZJsfRpvQc5nzffK974hAREWmiiooKAMID6i/Wt7fbx4nYKYFphNDQUIqKili8eDEZGRl8+OGHmEwmgoKCGDFiBPHx8Y6x3t7ebN26lVmzZrFt2zZycnLo27cvK1eupFu3bvUmMEuXLgVg69atrFu3jtraWgIDA+nXrx+GYZCVlcXMmTPZsGEDu3fvpn///mRlZXH06NEmJzAA8+bNY8SIEbz11lts2bKF06dP4+fnR2hoKMnJyTz++OPX9Tqlp6dTVlbm1Hbl8508ebJTAvPNN9+41AT913/9F//1X//luK8E5n/N/snKdSf2wftRcGhH3ZUXO3s9zNQcuKP3zYpORESkyYKCggAorrQSGez6K2lxpdVpnIidYbPZbO4O4mZJTU0lMTGR5cuXu2xWKa2Hvo//a3k0nNgL0f9ad+Wl7EvYOAsC+8FTGe6OTkRE5KqsVithPwuhX8fjZPzay2kaWa3NRuxnFym+GMj+koNaUlmctMkamMTERAzDICEhwd2hSBM88cQTGIZBYmKiu0NpGR79uC5ZSU+ERb3rvgb2g4n17/EjIiLSkphMJha9uZT1+yzEfnaR/MMWzl6ykX+47v76fRYWLl6i5EVctKkrMN98842j5gIgPDzcafqXtGxr167l22+/ddyPjY1lwIAB7guopdA+MCIi0orVtw9MqLkHCxcv0RLKUq82lcBI45WWlpKamnrNcV26dGHGjBnNHo+IiIjcuqxWK3l5eVRUVBAUFMTw4cN15UUapARG6pWTk8OoUaOuOc5sNjtWDRMRERERaW5KYEREREREpNVok0X8IiIiIiLSOimBERERERGRVkMJjIiIiIiItBpKYEREREREpNXwdHcAIjeL1WqltrbW3WGIiIgA0K5dO3eH0Oz02StN1Zj3hRIYaTMOHz5MTU2Nu8MQEREBoHfv3u4Oodnps1eaqjHvCyUw0mbU1NRgMpnw9NSPvYiIuJfFYnF3CDeFPnulKRr7vtBPk7Qpnp6ebeKSvYiISEuhz1650VTELyIiIiIirYYSGBERERERaTWUwIiIiIiISKuhBEZERERERFoNJTAiIiIiItJqaBUyEREREXErq9VKYWEhlZWVBAQEEBERgclkcndY0kIpgRG5BR2susCRMzUE396eUL+O7g5HRESkQRs3biQpOYWj5Uccbd3vDCYlOYno6Gg3RiYtlRIYkVvI6QsWkjaVsvPwWUfb4B6dSRkbQpeOeruLiEjLsnHjRqZNm0bHnw8m8IkZtLvDzOUTZZwuWMW0adNYtmyZkhhxYdhsNpu7gxC5Gfbt20eHDh1u2c20Lly28k//8T0HT13i1fH9GBzqy86Dp5ibuZswPy+WxIa5O0QREflfly9fxmw2uzuMZne1z16r1Urk0GGc7tgd/7g5GMaPpdk2Wy0n186ny8UKCnZ8qelkbURj3xdtqog/NTUVwzAct4SEBKf+wsJCRo8ejZ+fH4ZhEBUV5Z5ApV5PPPGE0/cvNTXV3SG1KPe9+y1fH/kfXh3fj3F3BxHQ2Ytxdwcxb3w4Xx06y8GqC+4OUURExKGwsJCj5UfwiXzUKXkBMAwPfCIf4eiRwxQWFropQmmp2uSckvHjxzNgwADCw8MdbWfOnCEmJoaamhqefPJJ/Pz8CAkJuSnxGIbByJEjycnJuSmP1xzOnz/Pu+++y9dff82uXbvYt28fNpuNgwcP1vs6VlVVsWbNGtavX09xcTHl5eV07tyZwYMHM2PGDB544AGXY+Li4ggLC+Obb74hMzPzJjyr1mlwqK/T/SGhXQE4cqZG9TAiItJiVFZWAtDujvr/4t7O3+w0TsSuTSYwsbGxTJ482alt586dnDhxggULFvDyyy+7J7BWrLKykpdeegkAs9mMr68v1dXVDY5fvXo1v/nNb7jzzjsZPXo0d955J0eOHGHNmjVs2rSJf/3Xf3Wczy4uLo64uDhSU1OVwNTjg1/35unP9rHz4CnG3R3kaP/qYN33Ifj29u4KTURExEVAQAAAl0+U0eHOX7j0Xz5Z5jROxK5NTSG7mqNHjwIQGBjo5khaJ39/f7744guqqqooLS1l8ODBVx3fu3dv1q9fz6FDh/joo49YsGABH3/8MUVFRdx+++3Mnj3b8T2RxrmrWycG9+jM3MzdrP/2KJVnL7L+26O8klnMkJ6ddfVFRERalIiICLrfGcwPBauw2Wqd+my2Wn4oWE334B5ERES4KUJpqZTAUDeFa9KkSQAkJiY6aiyunNJVWVnJiy++SFhYGB06dMDf35+JEydSXFzscr7s7GymTJlCnz598Pb2xtvbm0GDBrFs2TKncTk5ORiGAUBubm699R3JyckusdjZa3qurAUpLS3FMAwmT57Mnj17iIuLw9/fH8MwKC0tdYzLzMzkvvvuw9fXFy8vL8LDw1m4cCFWq/W6XkNvb2/GjBlD165dGzV+9OjRjBs3Dg8P5x/BPn368Otf/5rLly+zY8eO64qlLUsZG0KYnxfTPyliyB+2MP2TIsL8vEh+IMTdoYmIiDgxmUykJCdxoWQnJ9fO51L5d9ReOs+l8u84uXY+F0p2kpL0igr4xUWbnEL2U0lJSY66Cnt9DOCo3SgpKSEqKory8nLuv/9+YmNjqaysZM2aNWzevJktW7Y4/XXg9ddf58CBA0RGRjJhwgROnz7Npk2bePbZZ9m7dy+LFi1ynD8pKYmUlBTMZrPTtDZ7DNfL/vh9+/Zl0qRJVFdX07593RSi2bNns2DBAoKDg5k4cSI+Pj5s27aNWbNmUVhYyOrVq/+hx/5H2Vcq8fTUj2dTdenoyZLYMO0DIyIirUJ0dDTLli2r2wfmL7Mc7d2De7BUSyhLA/QbInVXOex1FfXVxzz11FMcO3aMzZs3M2bMGEf7nDlzGDRoEFOnTuXbb791tL/77ruEhoY6ncNisRAdHc3SpUt54YUX6NmzJyEhISQnJ5OSkuL4943y5ZdfMnfuXObNm+fU/te//pUFCxbw4IMPkp6ezm233QaAzWbjt7/9LX/6059Ys2YNEydOvGGxNMXZs2dJT0/Hy8uL4cOHuyWGW0GoX0clLiIi0ipER0fzwAMPUFhYSGVlJQEBAUREROjKizRIU8iuoaioiB07djBp0iSn5AXq6jimTp3K7t27naaS/TR5gbqrCc899xxWq5Xs7OxmjzswMJA5c+a4tL/zzjsAvPfee47kBeqm0b322msYhkFaWlqzx9eQ5557juPHjzN79mz8/PzcFoeIiIjcPCaTiWHDhhEbG8uwYcOUvMhV6QrMNRQUFABw7Nixeq+Q7Nmzx/HVvizz2bNnWbhwIRkZGZSUlHDu3DmnY25GcXr//v0dU8auVFBQQKdOnfjggw/qPa5jx46O53SzzZ49m08++YSxY8cye/Zst8QgIiIiN5/VatUVGGk0JTDXYF8KeMOGDWzYsKHBcfYkpaamhqioKHbt2sXAgQMde8p4enpSWlrKihUruHTpUrPH3a1bt3rbq6ursVgspKSkNHjsTxOumyElJYUFCxYwevRo1q5dq/+0msDz1AFMZw5hvb0nFt8wd4cjIiLSJBs3bmRe8iscLq9wtPW4M4hXkuepBkbqpQTmGnx8fAB4++23mT59+jXHZ2ZmsmvXLp555hnef/99p75PP/2UFStWNOnx7at0WSwWl74zZ840eJx9dbOf8vHxwTAMTp482aQ4mlNKSgrJyclERUXxH//xH3TsqNqNxjCd+p4u25PpULHT0XbpzmGcum8htV6+VzlSRESkZdi4cSPTpk3joV6erHr6NsIDTBRXWvlj3kmmTZvGMhXySz1UA3MN9tXF8vPzGzW+pKQEgIcfftilLy8vr95jPDw8Gly+2Ne37hfR8vJyl76ioqJGxXSliIgIqqqq2L9/f5OPbQ7JyckkJyczcuRINmzY4FSXI3WMy+frvXVLj6HDqf3wSCr8bh88kkr7U/vw/dtMp3EiIiItkdVqZV7yKzzUy5OMBC8igz3xbm8QGVx3/6FenryaknTdWzzIrUsJzDUMGTKEiIgI0tLS+Oyzz1z6a2tryc3Nddw3m80AbN++3Wlcbm6uyxUZu65du3LkyJF6+wYNGgTARx99RG3tj5s85efns3LlyqY9GeD5558HYMqUKVRVVbn0Hzt2jO+++67J570e9iWkhw8fruTlKoKW31PvDVstxCyBvhOgczfoOwEj+l/pcLTAeZyIiEgLVFhYyOHyCmYPb4fHT2aOeBgGv/9VOw4dOUphYaGbIpSWSlPIGiEtLY1Ro0aRkJDAkiVLuOeee/Dy8uLQoUPk5+dz4sQJLl68CEBMTAwhISG88cYbFBcXEx4ezt69e1m/fj2xsbGsWbPG5fyjR49m1apVxMfHM3DgQEwmE+PGjaNfv35ERkYydOhQtm7dytChQxkxYgRlZWVkZWURExPDunXrmvRcxo4dy9y5c3n11VcJCwtj7NixmM1mqqqqOHDgAHl5ecyfP5+77rqrya/TSy+95Jiatnv3bkebt7c3AC+//DK/+MUvgLpNOOfNm4enpydDhgzhX//1X13OFxUVRVRUVJPjaFN6DnO+b77XPXGIiIg0UWVlJQDhAfXXvdrb7eNE7JTANEJoaChFRUUsXryYjIwMPvzwQ0wmE0FBQYwYMYL4+HjHWG9vb7Zu3cqsWbPYtm0bOTk59O3bl5UrV9KtW7d6E5ilS5cCsHXrVtatW0dtbS2BgYH069cPwzDIyspi5syZbNiwgd27d9O/f3+ysrI4evRokxMYgHnz5jFixAjeeusttmzZwunTp/Hz8yM0NJTk5GQef/zx63qd0tPTKSsrc2q78vlOnjzZkcCUlpYCdbU99o0966MEBioSv3Zp8zz9PXesewQO7ai7AmNX9iUAJyasxtLlZzcrRBERkSYLCAgAoLjSSmSw66+kxZVWp3EidobNZrO5O4ibJTU1lcTERJYvX+6yWaW0Htf7fdy3bx8dOnSgXbt2zRfcTeT3H0/R/sz3GNEL6668lH2JbeMsarr2piq6/mWyRUSkZbh8+bJj2vmt7GqfvVarlXuHRjCg00kyErycppHV2mzEfnqR/zp/B9t3FGh10jaise+LNlkDk5iYiGEYJCQkuDsUaYInnngCwzBITEx0dygtwqkxS6np2gfSE2FRb0hPpKZrb06NXuju0ERERK7JZDLxSvI81u+3EPvpRfIPWzh7yUb+4br76/dbmJuUouRFXLSpKWQDBgwgKSnJcd++8aS0DnFxcYSF/bjPyYABA9wXTAtQ6+VLVfQH2gdGRERarejoaJYtW8a85FcY9uGP+8D0DO7OsmUpWkJZ6tWmppBJ45WWlpKamnrNcV26dGHGjBnNHs+NcKtNIRMRkdZLU8icWa1WCgsLqaysJCAggIiICF15aYMa+75oU1dgpPFKS0tJSUm55jiz2dxqEhgRERFpmUwmE8OGDbv2QBGUwEgDoqKi0MU5EREREWlp2mQRv4iIiIiItE5KYEREREREpNVQAiMiIiIiIq2GEhgREREREWk1lMCIiIiIiEiroVXIpE2xWCzuDkFERKRNfR61pecq/5jG/qwogZE2o3379tTU1GC1Wt0dioiISJugz15pDoZNm31IG2G1WqmtrXV3GCIiIgDX3J3+VqDPXmmqxrwvlMCIiIiIiEiroSJ+ERERERFpNZTAiIiIiIhIq6EERkREREREWg0lMCIiIiIi0moogRERERERkVZD+8CIiIiIiFtZrVby8vKoqKggKCiI4cOHYzKZ3B2WtFBKYERuQfuPn6W06jwhfrfRq1tnd4cjIiLSoLVr1zLjxZkcPlTmaOvR08ySNxcTFxfnxsikpdI+MCK3kOpzNTyfVsT2Aycdbb8K8+etxwbStVN7N0YmIiLiau3atcTHx9Px54PxiXyUdneYuXyijB8KVnGhZCfp6elKYsSFEhiRW8hjywrYd/ws88aHMzjUl50HT/FKZjG/7O7Dx09HuDs8ERERB6vVSujPfk5V+274x83BMH4szbbZajm5dj5+lys5WHJA08nESZsq4k9NTcUwDMctISHBqb+wsJDRo0fj5+eHYRhERUW5J1Cp1xNPPOH0/UtNTXV3SC3K/uNnyf++innjwxl3dxABnb0Yd3cQKeP7krf/JPuPn3V3iCIiIg55eXkcPlSGT+SjTskLgGF44BP5CIfLSsnLy3NThNJStckamPHjxzNgwADCw8MdbWfOnCEmJoaamhqefPJJ/Pz8CAkJuSnxGIbByJEjycnJuSmP1xzOnz/Pu+++y9dff82uXbvYt28fNpuNgwcP1vs62mw2/umf/omdO3eyb98+qquruf322/n5z3/O008/zVNPPUW7du2cjomLiyMsLIxvvvmGzMzMm/TMWo/SqvMADA71dWofEtrV0a96GBERaSkqKioAaHeHud7+dv5mp3Eidm0ygYmNjWXy5MlObTt37uTEiRMsWLCAl19+2T2BtWKVlZW89NJLAJjNZnx9famurm5wvNVq5e2332bQoEGMGzeOO+64g1OnTrFp0yaeeeYZVq9ezcaNG/Hw+PEvMnFxccTFxZGamqoEph4hfrcBsPPgKcbdHeRo/+pgtVO/iIhISxAUVPdZdflEGR3u/IVL/+WTZU7jROzaZAJTn6NHjwIQGBjo5khaJ39/f7744gvuueceunbtytixY9m8eXOD4z09PTl9+jReXl5O7RaLhfvvv5/Nmzfz+eefM27cuOYO/ZbRq1tnfhXmzyuZxdiwMSS0K18drCYp8+8M7+Wvqy8iItKiDB8+nB49zVQVrKq3BuaHgtX0MIcwfPhwN0YpLVGbqoFpiGEYTJo0CYDExERHjcWVU7oqKyt58cUXCQsLo0OHDvj7+zNx4kSKi4tdzpednc2UKVPo06cP3t7eeHt7M2jQIJYtW+Y0LicnB8MwAMjNza23viM5OdklFjt7Tc+VtSClpaUYhsHkyZPZs2cPcXFx+Pv7YxgGpaWljnGZmZncd999+Pr64uXlRXh4OAsXLsRqtV7Xa+jt7c2YMWPo2rVro4/5afICdYlNbGwsAAcOHLiuWNqytx4byC+7+zD9kyKG/GEL0z8p4pfdfViaMNDdoYmIiDgxmUwseXMxF0p2cnLtfC6Vf0ftpfNcKv+Ok2vnc6FkJ0sWL1IBv7jQFRggKSnJUVdhr48BHLUbJSUlREVFUV5ezv33309sbCyVlZWsWbOGzZs3s2XLFiIiflzh6fXXX+fAgQNERkYyYcIETp8+zaZNm3j22WfZu3cvixYtcpw/KSmJlJQUzGaz07Q2ewzXy/74ffv2ZdKkSVRXV9O+fd0yurNnz2bBggUEBwczceJEfHx82LZtG7NmzaKwsJDVq1f/Q0hrJRgAAA/hSURBVI/9j6itrWXTpk0ATjVK0jhdO7Xn46cjtA+MiIi0CnFxcaSnp9ftA/OXWY72HuYQlmgJZWmIrQ1Zvny5DbAtX768SX3Dhg2zeXp62r744gun9r1799o6d+5s69evn1P7999/73KOy5cv28aMGWMzmUy2srIypz7ANnLkyHpjTkpKsgG27OzsRsV88OBBG2ADbHPnznU55osvvrABtgcffNB27tw5R3ttba3tueeeswG29PT0emNpigceeMAG2A4ePHjNsUlJSbakpCTb//2//9f2i1/8wgbYJk+e3OD4q32vREREpPWxWCy27Oxs2yeffGLLzs62WSwWd4ckLZimkF1DUVERO3bsYNKkSYwZM8apr3fv3kydOpXdu3c7TSULDQ11OY+npyfPPfccVquV7OzsZo87MDCQOXPmuLS/8847ALz33nvcdtuPRd2GYfDaa69hGAZpaWnNHt+VUlJSSElJ4d/+7d/Yu3cvL730Eu+///5NjUFERETcx2QyERUVxWOPPUZUVJSmjclVaQrZNRQUFABw7NgxkpOTXfr37Nnj+Gqf8nT27FkWLlxIRkYGJSUlnDt3zukY+4IBzal///6OKWNXKigooFOnTnzwwQf1HtexY0fHc7pZbDYbtbW1HD16lPXr1/P73/+e/Px8Nm7ciI+Pz02NRURERG4+q9VKXl4eFRUVBAUFMXz4cCUx0iAlMNdgXwp4w4YNbNiwocFx9iSlpqaGqKgodu3axcCBAx17ynh6elJaWsqKFSu4dOlSs8fdrVu3eturq6uxWCykpKQ0eOxPE66bwcPDg+DgYJ577jn8/Px49NFH+cMf/sDrr79+02NplSr3QPX30PVnEOC6FKWIiEhLtXbtWn734guUHjriaAvpGcyiN5eqBkbqpQTmGuxXAN5++22mT59+zfGZmZns2rWLZ555xmUa1KeffsqKFSua9Pj2fVAsFotL35kzZxo8zr662U/5+PhgGAYnT55sUhw30/333w/Qqjf2vGlO7IP1M6Dsyx/bfhYFEz+ETn7uikpERKRR1q5dS3x8PA/18iTt6dsIDzBRXGnlj9uPEx8fT7oK+aUeqoG5BvvqYvn5+Y0aX1JSAsDDDz/s0peXl1fvMR4eHg0uX+zrW7erenl5uUtfUVFRo2K6UkREBFVVVezfv7/Jx94s9il2np7Krx1qztV/+/cIOP53eCQVfrev7uuxYkif7DxORESkhbFarfzuxRd4qJcnGQleRAZ74t3eIDLYk4xfe/FQb09emjnjurd4kFuXEphrGDJkCBEREaSlpfHZZ5+59NfW1pKbm+u4bzabAdi+fbvTuNzc3AYL07t27cqRI0fq7Rs0aBAAH330EbW1tY72/Px8Vq5c2bQnAzz//PMATJkyhaqqKpf+Y8eO8d133zX5vE21Z88eKisrXdrPnz/PzJkzAXjwwQebPY5W44/d67/ZaiFmCfSdAJ271X2N/lc4uM15nIiISAuTl5dH6aEjzB7eDo+fzBzxMAx+f287DpYdbvAPwNJ26U/cjZCWlsaoUaNISEhgyZIl3HPPPXh5eXHo0CHy8/M5ceIEFy9eBCAmJoaQkBDeeOMNiouLCQ8PZ+/evaxfv57Y2FjWrFnjcv7Ro0ezatUq4uPjGThwICaTiXHjxtGvXz8iIyMZOnQoW7duZejQoYwYMYKysjKysrKIiYlh3bp1TXouY8eOZe7cubz66quEhYUxduxYzGYzVVVVHDhwgLy8PObPn89dd93V5NfppZdeckxN2717t6PN29sbgJdffplf/KKuPmPTpk388z//M1FRUfzsZz/j9ttvp7y8nM8//5yqqiruvfdeRyIj19BzmPN9873uiUNERKQJKioqAAgPqL9Y395uHydipwSmEUJDQykqKmLx4sVkZGTw4YcfYjKZCAoKYsSIEcTHxzvGent7s3XrVmbNmsW2bdvIycmhb9++rFy5km7dutWbwCxduhSArVu3sm7dOmprawkMDKRfv34YhkFWVhYzZ85kw4YN7N69m/79+5OVlcXRo0ebnMAAzJs3jxEjRvDWW2+xZcsWTp8+jZ+fH6GhoSQnJ/P4449f1+uUnp5OWVmZU9uVz3fy5MmOBOb//J//w9NPP8327dvZuXMnZ8+e5fbbbyc8PJyEhASeeeYZTSG70ux6Vq47sQ/ej4JDO+quvNjZ62Gm5sAdvW9GdCIiIk0WFBQEQHGllchg18/84kqr0zgRO8Nms9ncHcTNkpqaSmJiIsuXL3fa9V5aF30fr7A8Gk7srZs2Zr63LnnZOAsC+8FTGe6OTkREpEFWq5Wwn4XQr+NxMn7t5TSNrNZm+//bu7eYqM41jOPPKqM0QUCMGoyxM1YlHhNsmgYSiUEbSXthJuIBTxW0pHfGpL0ArMEDtlXbbvZdoxMZI7Gp2SKJbS+MMYgYNL0RJR46GqCoTYixwGCjdWB6QRjDZgx2ysw68P/dmJlZMY/fyqzXd75vfUveH56p9VmmAvfb2FIZw4zLe2BKSkpkGIaKiorMjoJ/YMuWLTIMQyUlJWZHsY71Jweblf+VSN9kDf6ZuUQqjP6cHwAArCIpKUnf/Oe/+vHXkLw/PFNzZ0jB52E1dw6+/vHXkL7+tprmBSOMqxmY69evq76+PvJ68eLFw5Z/wdrq6up048aNyGuv16vs7GzzAlkJz4EBANhUtOfAzHbP0tffVrOFMqIaVw0MXl97e7v8fv+ox02ePFm7du2Kex4AAOBc/f39unz5sn7//XfNmDFDeXl5zLzglWhgEFVDQ4Py8/NHPc7tdqu9vT3+gQAAAADRwAAAAACwkXF5Ez8AAAAAe6KBAQAAAGAbNDAAAAAAbIMGBgAAAIBt0MAAAAAAsA2X2QGARAiHwwoGg2bHAABgmNTUVBmGYXaMuKD2IlajfS9oYDAuBINBpaenmx0DAIBhenp6lJaWZnaMuKD2IlajfS94DgzGhfH2K1Bvb69mzZqlzs5OxxbGeGHsYsfYxY6xi53dx44ZmJfsfi4xUqznlBkYQJJhGOPyYpiWljYu/91jgbGLHWMXO8Yudoyd9cRaezmXzjPW55Sb+AEAAADYBg0MAAAAANuggQEcKDk5WZWVlUpOTjY7iu0wdrFj7GLH2MWOsXMOzqXzxOucchM/AAAAANtgBgYAAACAbdDAAAAAALANGhgAAAAAtkEDAwAAAMA2aGAAB/nll1/04YcfKiMjQykpKXrvvfd06tQps2NZXm1trT755BO9++67Sk5OlmEY8vv9ZseyvIcPH6q6ulqrVq3SW2+9pYkTJyozM1OFhYW6du2a2fEsrbu7Wzt37lRubq4yMzOVnJysmTNnasWKFTpz5ozYX+f1HT58WIZhyDAMXb161ew4+Ae49jpPouoCu5ABDtHQ0KCCggJNnDhRRUVFSk9PV11dndra2nTw4EFVVFSYHdGyPB6POjo6NHXqVKWkpKijo0M1NTUqLi42O5qllZWV6dChQ5ozZ46WL1+u6dOnKxAIqL6+XuFwWN9//73Wr19vdkxLunfvnrKzs5WTk6O5c+dqypQp6urq0rlz59TV1aXS0lIdPXrU7JiWd/v2bS1dulQul0tPnz5Vc3OzcnJyzI6F18S113kSVRdoYAAHCIVCmj9/vh48eKDm5mYtXbpUkhQMBpWbm6u7d+/q1q1bmjdvnslJrenChQuaN2+e3G63vvrqK5WXl1NEX0NdXZ2mTZumvLy8Ye9fvnxZK1euVGpqqh49esQzHaLo7+9XOByWy+Ua9n4wGFROTo5u3bql1tZWLVq0yKSE1tff36/c3FwZhqGsrCzV1tbSwNgM117nSVRdYAkZ4AAXL17U/fv3tWnTpkjzIkmpqanas2ePQqGQampqTExobe+//77cbrfZMWxnzZo1I4qUJOXl5Sk/P19PnjzRzZs3TUhmfUlJSSOaF2nwO1tQUCBpcJYGr3bo0CG1tLTo+PHjSkpKMjsOYsC113kSVRdoYAAHaGhokCStWrVqxGdD7126dCmRkTDOTZgwQZKi/icdr/bs2TNdvHhRhmFo4cKFZsexrNbWVu3bt0+ff/45s1SATYxlXaCyAA4QCAQkKeoSsYyMDE2dOjVyDBBvv/32my5cuKDMzEwtWbLE7DiW1t3drerqag0MDKirq0s///yzOjs7VVlZyZLPVwiFQiouLtaCBQtUVlZmdhwAr2Gs6wINDOAAPT09kqT09PSon6elpenBgweJjIRx6sWLF9q6daueP3+uw4cPs7RnFN3d3dq3b1/k9YQJE3TkyBF9+umnJqayti+++EItLS26du1a5BddANYVj7rAEjIAwJgYGBjQ9u3b1djYqNLSUm3dutXsSJbn8XgUDocVCoXU1tam/fv3a/fu3SosLFQoFDI7nuW0tLSoqqpKn332md555x2z4wAYRbzqAg0M4ABDMy9DMzH/r7e395WzM8BYCIfDKi0tVW1trbZs2aLvvvvO7Ei2kpSUJI/Ho7KyMlVVVens2bM6duyY2bEsZ9u2bZozZ4727t1rdhQAo4hnXaCBARxgaK18tPtc/vjjDz1+/Jj19IibgYEB7dixQ8ePH9fGjRvl9/v1xhuUl1gNbbwxtDkHXmppadGdO3f05ptvRh5eaRiGTpw4IUmRbZXr6+vNDQqMc/GuC9wDAzjA8uXL9eWXX+r8+fMqKioa9tn58+cjxwBjbWBgQB9//LFqamq0YcMGnTx5kvte/qVHjx5JYge3aHbs2BH1/cbGRgUCAa1evVrTpk2Tx+NJbDAAEYmoC1wdAQdYuXKl3n77bZ06dUo7d+5Udna2pMGH4h04cEAul4sHg2HMDf3C5vf7tW7dOtXW1tK8vKbr169r9uzZI5Z2PnnyRBUVFZKkDz74wIxolubz+aK+X1xcrEAgoPLych5kCZgoUXWBBgZwAJfLJZ/Pp4KCAuXl5Wnjxo1KS0tTXV2d2traVFVVpaysLLNjWpbP51NTU5MkRR6w5fP5Ikt4vF6vvF6vSemsa//+/fL7/Zo0aZKysrJUVVU14hiv1xtpqPGS3++Xz+dTfn6+3G63UlJS1NHRoZ9++kl9fX0qLCzUpk2bzI4JxBXXXudJVF2ggQEcIj8/X01NTaqsrNTp06f1119/adGiRTpw4IA2b95sdjxLa2pqiqyhH3LlyhVduXJF0uBOURTRkdrb2yVJfX19OnjwYNRjPB4PDUwUa9euVU9Pj65evarGxkb9+eefmjJlipYtW6aPPvpIRUVFMgzD7JhAXHHtdZ5E1QUjHA6H/9XfAAAAAAAJwjYxAAAAAGyDBgYAAACAbdDAAAAAALANGhgAAAAAtkEDAwAAAMA2aGAAAAAA2AYNDAAAAADboIEBAAAAYBs0MAAAAABsgwYGAAAAgG3QwAAAAACwDRoYAAAAALZBAwMAAADANv4GLYBBhskKmWwAAAAASUVORK5CYII=",
"text/plain": [
"